Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 21(5): 2512-2533, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38602861

RESUMEN

Parkinson's disease (PD) is a debilitating neurodegenerative disease primarily impacting neurons responsible for dopamine production within the brain. Pramipexole (PRA) is a dopamine agonist that is currently available in tablet form. However, individuals with PD commonly encounter difficulties with swallowing and gastrointestinal motility, making oral formulations less preferable. Microneedle (MN) patches represent innovative transdermal drug delivery devices capable of enhancing skin permeability through the creation of microconduits on the surface of the skin. MNs effectively reduce the barrier function of skin and facilitate the permeation of drugs. The work described here focuses on the development of polymeric MN systems designed to enhance the transdermal delivery of PRA. PRA was formulated into both dissolving MNs (DMNs) and directly compressed tablets (DCTs) to be used in conjunction with hydrogel-forming MNs (HFMNs). In vivo investigations using a Sprague-Dawley rat model examined, for the first time, if it was beneficial to prolong the application of DMNs and HFMNs beyond 24 h. Half of the patches in the MN cohorts were left in place for 24 h, whereas the other half remained in place for 5 days. Throughout the entire 5 day study, PRA plasma levels were monitored for all cohorts. This study confirmed the successful delivery of PRA from DMNs (Cmax = 511.00 ± 277.24 ng/mL, Tmax = 4 h) and HFMNs (Cmax = 328.30 ± 98.04 ng/mL, Tmax = 24 h). Notably, both types of MNs achieved sustained PRA plasma levels over a 5 day period. In contrast, following oral administration, PRA remained detectable in plasma for only 48 h, achieving a Cmax of 159.32 ± 113.43 ng/mL at 2 h. The HFMN that remained in place for 5 days demonstrated the most promising performance among all investigated formulations. Although in the early stages of development, the findings reported here offer a hopeful alternative to orally administered PRA. The sustained plasma profile observed here has the potential to reduce the frequency of PRA administration, potentially enhancing patient compliance and ultimately improving their quality of life. This work provides substantial evidence advocating the development of polymeric MN-mediated drug delivery systems to include sustained plasma levels of hydrophilic pharmaceuticals.


Asunto(s)
Administración Cutánea , Sistemas de Liberación de Medicamentos , Agujas , Enfermedad de Parkinson , Pramipexol , Ratas Sprague-Dawley , Pramipexol/administración & dosificación , Pramipexol/farmacocinética , Animales , Ratas , Enfermedad de Parkinson/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Masculino , Absorción Cutánea/efectos de los fármacos , Piel/metabolismo , Piel/efectos de los fármacos , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/farmacocinética , Agonistas de Dopamina/administración & dosificación , Agonistas de Dopamina/farmacocinética , Hidrogeles/química
2.
Small ; 18(18): e2106392, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35362226

RESUMEN

Microneedles (MNs) are minimally invasive devices, which have gained extensive interest over the past decades in various fields including drug delivery, disease diagnosis, monitoring, and cosmetics. MN geometry and shape are key parameters that dictate performance and therapeutic efficacy, however, traditional fabrication methods, such as molding, may not be able to offer rapid design modifications. In this regard, the fabrication of MNs using 3D printing technology enables the rapid creation of complex MN prototypes with high accuracy and offers customizable MN devices with a desired shape and dimension. Moreover, 3D printing shows great potential in producing advanced transdermal drug delivery systems and medical devices by integrating MNs with a variety of technologies. This review aims to demonstrate the advantages of exploiting 3D printing technology as a new tool to microengineer MNs. Various 3D printing methods are introduced, and representative MNs manufactured by such approaches are highlighted in detail. The development of advanced MN devices is also included. Finally, clinical translation and future perspectives for the development of MNs using 3D printing are discussed.


Asunto(s)
Agujas , Impresión Tridimensional , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos
3.
Molecules ; 27(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335123

RESUMEN

Curcumin (CUR) and D-panthenol (DPA) have been widely investigated for wound-healing treatment. In order to analyse these two compounds from a dosage form, such as polymer-based wound dressings or creams, an analytical method that allows the quantification of both drugs simultaneously should be developed. Here, we report for the first time a validated high-performance liquid chromatographic (HPLC) method coupled with UV detection to quantify CUR and DPA based on the standards set by the International Council on Harmonization (ICH) guidelines. The separation of the analytes was performed using a C18 column that utilised a mobile phase consisting of 0.001% v/v phosphoric acid and methanol using a gradient method with a run time of 15 min. The method is linear for drug concentrations within the range of 0.39-12.5 µg mL-1 (R2 = 0.9999) for CUR and 0.39-25 µg mL-1 for DPA (R2 = 1). The validated method was found to be precise and accurate. Moreover, the CUR and DPA solution was found to be stable under specific storage conditions. We, therefore, suggest that the HPLC-UV method developed in this study may be very useful in screening formulations for CUR and DPA within a preclinical setting through in vitro release studies.


Asunto(s)
Curcumina , Vendajes , Cromatografía Líquida de Alta Presión/métodos , Ácido Pantoténico/análogos & derivados
4.
Mol Pharm ; 17(9): 3487-3500, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32672976

RESUMEN

Implantable devices are versatile and promising drug delivery systems, and their advantages are well established. Of these advantages, long-acting drug delivery is perhaps the most valuable. Hydrophilic compounds are particularly difficult to deliver for prolonged times. This work investigates the use of poly(caprolactone) (PCL)-based implant coatings as a novel strategy to prolong the delivery of hydrophilic compounds from implantable devices that have been prepared by additive manufacturing (AM). Hollow implants were prepared from poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) using fused filament fabrication (FFF) AM and subsequently coated in a PCL-based coating. Coatings were prepared by solution-casting mixtures of differing molecular weights of PCL and poly(ethylene glycol) (PEG). Increasing the proportion of low-molecular-weight PCL up to 60% in the formulations decreased the crystallinity by over 20%, melting temperature by over 4 °C, and water contact angle by over 40°, resulting in an increased degradation rate when compared to pure high-molecular-weight PCL. Addition of 30% PEG to the formulation increased the porosity of the formulation by over 50% when compared to an equivalent PCL-only formulation. These implants demonstrated in vitro release rates for hydrophilic model compounds (methylene blue and ibuprofen sodium) ranging from 0.01 to 34.09 mg/day, depending on the drug used. The versatility of the devices produced in this work and the range of release rates achievable show great potential. Implants could be specifically developed in order to match the specific release rate required for a number of drugs for a wide range of conditions.


Asunto(s)
Preparaciones de Acción Retardada/química , Preparaciones Farmacéuticas/química , Poliésteres/química , Implantes Absorbibles , Sistemas de Liberación de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles/química , Alcohol Polivinílico/química , Impresión Tridimensional
5.
Int J Mol Sci ; 19(9)2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30231546

RESUMEN

Resveratrol is a naturally occurring polyphenol that provides several health benefits including cardioprotection and cancer prevention. However, its biological activity is limited by a poor bioavailability when taken orally. The aim of this work was to evaluate the capability of casein nanoparticles as oral carriers for resveratrol. Nanoparticles were prepared by a coacervation process, purified and dried by spray-drying. The mean size of nanoparticles was around 200 nm with a resveratrol payload close to 30 µg/mg nanoparticle. In vitro studies demonstrated that the resveratrol release from casein nanoparticles was not affected by the pH conditions and followed a zero-order kinetic. When nanoparticles were administered orally to rats, they remained within the gut, displaying an important capability to reach the intestinal epithelium. No evidence of nanoparticle "translocation" were observed. The resveratrol plasma levels were high and sustained for at least 8 h with a similar profile to that observed for the presence of the major metabolite in plasma. The oral bioavailability of resveratrol when loaded in casein nanoparticles was calculated to be 26.5%, 10 times higher than when the polyphenol was administered as oral solution. Finally, a good correlation between in vitro and in vivo data was observed.


Asunto(s)
Anticarcinógenos/administración & dosificación , Cardiotónicos/administración & dosificación , Caseínas/química , Portadores de Fármacos/química , Nanopartículas/química , Resveratrol/administración & dosificación , Administración Oral , Animales , Anticarcinógenos/farmacocinética , Disponibilidad Biológica , Cardiotónicos/farmacocinética , Masculino , Nanopartículas/ultraestructura , Ratas Wistar , Resveratrol/farmacocinética
6.
Mol Pharm ; 13(3): 907-14, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26795883

RESUMEN

We describe, for the first time, stimulus-responsive hydrogel-forming microneedle (MN) arrays that enable delivery of a clinically relevant model drug (ibuprofen) upon application of light. MN arrays were prepared using a polymer prepared from 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA) by micromolding. The obtained MN arrays showed good mechanical properties. The system was loaded with up to 5% (w/w) ibuprofen included in a light-responsive 3,5-dimethoxybenzoin conjugate. Raman spectroscopy confirmed the presence of the conjugate inside the polymeric MN matrix. In vitro, this system was able to deliver up to three doses of 50 mg of ibuprofen upon application of an optical trigger over a prolonged period of time (up to 160 h). This makes the system appealing as a controlled release device for prolonged periods of time. We believe that this technology has potential for use in "on-demand" delivery of a wide range of drugs in a variety of applications relevant to enhanced patient care.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Sistemas de Liberación de Medicamentos/instrumentación , Hidrogeles/química , Ibuprofeno/metabolismo , Luz , Agujas , Polímeros/química , Administración Cutánea , Antiinflamatorios no Esteroideos/administración & dosificación , Humanos , Ibuprofeno/administración & dosificación , Ensayo de Materiales , Microinyecciones , Piel
7.
Pharm Res ; 33(5): 1055-73, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26908048

RESUMEN

This review aims to concisely chart the development of two individual research fields, namely nanomedicines, with specific emphasis on nanoparticles (NP) and microparticles (MP), and microneedle (MN) technologies, which have, in the recent past, been exploited in combinatorial approaches for the efficient delivery of a variety of medicinal agents across the skin. This is an emerging and exciting area of pharmaceutical sciences research within the remit of transdermal drug delivery and as such will undoubtedly continue to grow with the emergence of new formulation and fabrication methodologies for particles and MN. Firstly, the fundamental aspects of skin architecture and structure are outlined, with particular reference to their influence on NP and MP penetration. Following on from this, a variety of different particles are described, as are the diverse range of MN modalities currently under development. The review concludes by highlighting some of the novel delivery systems which have been described in the literature exploiting these two approaches and directs the reader towards emerging uses for nanomedicines in combination with MN.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Microinyecciones/instrumentación , Nanopartículas/química , Agujas , Preparaciones Farmacéuticas/administración & dosificación , Piel/metabolismo , Vacunas/administración & dosificación , Administración Cutánea , Animales , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Humanos , Nanomedicina/instrumentación , Nanopartículas/administración & dosificación , Nanopartículas/metabolismo , Farmacocinética , Piel/ultraestructura , Absorción Cutánea , Vacunación/instrumentación , Vacunas/farmacocinética
8.
Beilstein J Org Chem ; 10: 3127-35, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25670982

RESUMEN

All mammals lose their ability to produce lactase (ß-galactosidase), the enzyme that cleaves lactose into galactose and glucose, after weaning. The prevalence of lactase deficiency (LD) spans from 2 to 15% among northern Europeans, to nearly 100% among Asians. Following lactose consumption, people with LD often experience gastrointestinal symptoms such as abdominal pain, bowel distension, cramps and flatulence, or even systemic problems such as headache, loss of concentration and muscle pain. These symptoms vary depending on the amount of lactose ingested, type of food and degree of intolerance. Although those affected can avoid the uptake of dairy products, in doing so, they lose a readily available source of calcium and protein. In this work, gels obtained by complexation of Tetronic 90R4 with α-cyclodextrin loaded with ß-galactosidase are proposed as a way to administer the enzyme immediately before or with the lactose-containing meal. Both molecules are biocompatible, can form gels in situ, and show sustained erosion kinetics in aqueous media. The complex was characterized by FTIR that evidenced an inclusion complex between the polyethylene oxide block and α-cyclodextrin. The release profiles of ß-galactosidase from two different matrices (gels and tablets) of the in situ hydrogels have been obtained. The influence of the percentage of Tetronic in media of different pH was evaluated. No differences were observed regarding the release rate from the gel matrices at pH 6 (t 50 = 105 min). However, in the case of the tablets, the kinetics were faster and they released a greater amount of 90R4 (25%, t 50 = 40-50 min). Also, the amount of enzyme released was higher for mixtures with 25% Tetronic. Using suitable mathematical models, the corresponding kinetic parameters have been calculated. In all cases, the release data fit quite well to the Peppas-Sahlin model equation, indicating that the release of ß-galactosidase is governed by a combination of diffusion and erosion processes. It has been observed that the diffusion mechanism prevails over erosion during the first 50 minutes, followed by continued release of the enzyme due to the disintegration of the matrix.

9.
Eur J Pharm Biopharm ; : 114481, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39255921

RESUMEN

Schizophrenia is a severe mental disorder that affects millions of people worldwide. Several atypical antipsychotic medications, including paliperidone (PPD), has been developed and proven effective in treating it. To date, four PPD extended-release products have been launched commercially, providing up to six months of therapeutic effect with a single administration. However, the need for hospital injections by professional healthcare workers not only lead to poor patients' adherence, but also put additional pressure on the healthcare system. Therefore, three PPD microarray patch (PPD MAP) systems based on dissolving microneedle technology and implantable microneedle technology were developed in this work. The two dissolving microarray patch systems contained either PPD crude drug (PPD DMAP-CD) or PPD nanocrystal (PPD DMAP-NC) and the implantable MAP contained PPD crude drug (PPD IMAP). All three types of PPD MAPs showed excellent mechanical and insertion properties as they achieved over 256 µm insertion depth in skin model. In vitro release study showed that PPD released from IMAP in a much more sustained manner (up to 14 days) than PPD did from DMAPs (7 days), with only 20 % initial burst release from IMAP compared with 43-71 % from DMAPs. The MAP dissolution study showed that both DMAPs can be immediately dissolved within less than 3 min once inserted into the skin, indicating a faster action potential compared with IMAP. Ex vivo delivery study showed that 1.68 ±â€¯0.23 mg, 1.39 ±â€¯0.07 mg, and 1.18 ±â€¯0.12 mg were delivered from DMAP-CD, DMAP-NC and IMAP, respectively, demonstrating that over 50 % and up to 70 % of PPD in the MAPs can be delivered into the skin. The IMAP offers most sustained release of PPD whereas DMAP-NC exhibits fastest PPD release (11.19 % vs 20.01 % into Franz cell receiver compartment over 24 h). This work presents a promising alternative for the sustained delivery of antipsychotic drugs, allowing for patient self-administration and extended release concurrently. Patients may potentially use both DMAP and IMAP to achieve a sustained release of PPD while also avoid having an initial therapeutic lag.

10.
Anal Methods ; 16(7): 979-989, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38165785

RESUMEN

Implantable devices have been widely investigated to improve the treatment of multiple diseases. Even with low drug loadings, these devices can achieve effective delivery and increase patient compliance by minimizing potential side effects, consequently enhancing the quality of life of the patients. Moreover, multi-drug products are emerging in the pharmaceutical field, capable of treating more than one ailment concurrently. Therefore, a simple analytical method is essential for detecting and quantifying different analytes used in formulation development and evaluation. Here, we present, for the first time, an isocratic method for tizanidine hydrochloride (TZ) and lidocaine (LD) loaded into a subcutaneous implant, utilizing reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a UV detector. These implants have the potential to treat muscular spasticity while providing pain relief for several days after implantation. Chromatographic separation of the two drugs was accomplished using a C18 column, with a mobile phase consisting of 0.1% TFA in water and MeOH in a 58 : 42 ratio, flowing at 0.7 ml min-1. The method exhibited specificity and robustness, providing accurate and precise results. It displayed linearity within the range of 0.79 to 100 µg ml-1, with an R2 value of 1 for the simultaneous analysis of TZ and LD. The developed method demonstrated selectivity, offering limits of detection and quantification of 0.16 and 0.49 µg ml-1 for TZ, and 0.30 and 0.93 µg ml-1 for LD, respectively. Furthermore, the solution containing both TZ and LD proved stable under various storage conditions. While this study applied the method to assess an implant device, it has broader applicability for analysing and quantifying the in vitro drug release of TZ and LD from diverse dosage forms in preclinical settings.


Asunto(s)
Clonidina/análogos & derivados , Lidocaína , Calidad de Vida , Humanos , Lidocaína/análisis , Lidocaína/química , Cromatografía Líquida de Alta Presión/métodos , Preparaciones Farmacéuticas
11.
Int J Pharm ; 665: 124710, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277153

RESUMEN

Drug delivery routes play an essential role in determining the efficacy and safety of medications. This study focused on the development and optimization of 3D-printed reservoir type implants as a combinational therapy drug delivery system for Glioblastoma Multiforme (GBM) post-surgery, possessing also antibacterial properties. In this study, we used a multimodal agent, Acriflavine (ACF) as an alternative drug to treat GBM. To date, ACF is used only as an antiseptic agent, although it has been shown to possess strong anticancer activities. ACF and a low molecular weight PCL were loaded into 3D-printed reservoir-type implants for sustained drug delivery. The study demonstrated that ACF implants exhibited sustained drug release kinetics, with faster release during the initial 30 days, followed by a gradual decrease over 90 days. This controlled release profile enhances the effectiveness of ACF delivery to tumour targets while minimizing side effects associated with systemic administration. In vitro experiments confirmed the inhibitory activity of ACF against GBM cells compared to non-tumour cells. The study also highlighted the bacteriostatic effects of ACF, making the implants potentially useful for post-surgery infection management, particularly against S. aureus, a common bacterial infection associated with brain surgery. The long-term drug-release capabilities of the implants make them attractive candidates for both tumour inhibition and antibacterial treatment. The study suggests that the developed ACF delivery systems have the potential for future clinical studies. Their ability to provide increased drug efficacy without systemic toxicity makes them promising candidates for cancer therapy and post-surgery infection management.

12.
J Mater Chem B ; 12(18): 4375-4388, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38477350

RESUMEN

Hydrogel-forming microneedles (HF-MNs) are composed of unique cross-linked polymers that are devoid of the active pharmaceutical ingredient (API) within the microneedle array. Instead, the API is housed in a reservoir affixed on the top of the baseplate of the HF-MNs. To date, various types of drug-reservoirs and multiple solubility-enhancing approaches have been employed to deliver hydrophobic molecules combined with HF-MNs. These strategies are not without drawbacks, as they require multiple manufacturing steps, from solubility enhancement to reservoir production. However, this current study challenges this trend and focuses on the delivery of the hydrophobic antibiotic rifampicin using SmartFilm-technology as a solubility-enhancing strategy. In contrast to previous techniques, smart drug-reservoirs (SmartReservoirs) for hydrophobic compounds can be manufactured using a one step process. In this study, HF-MNs and three different concentrations of rifampicin SmartFilms (SFs) were produced. Following this, both HF-MNs and SFs were fully characterised regarding their physicochemical and mechanical properties, morphology, Raman surface mapping, the interaction with the cellulose matrix and maintenance of the loaded drug in the amorphous form. In addition, their drug loading and transdermal permeation efficacy were studied. The resulting SFs showed that the API was intact inside the cellulose matrix within the SFs, with the majority of the drug in the amorphous state. SFs alone demonstrated no transdermal penetration and less than 20 ± 4 µg of rifampicin deposited in the skin layers. In contrast, the transdermal permeation profile using SFs combined with HF-MNs (i.e. SmartReservoirs) demonstrated a 4-fold increase in rifampicin deposition (80 ± 7 µg) in the skin layers and a permeation of approx. 500 ± 22 µg. Results therefore illustrate that SFs can be viewed as novel drug-reservoirs (i.e. SmartReservoirs) for HF-MNs, achieving highly efficient loading and diffusion properties through the hydrogel matrix.


Asunto(s)
Administración Cutánea , Sistemas de Liberación de Medicamentos , Hidrogeles , Agujas , Rifampin , Rifampin/administración & dosificación , Rifampin/química , Hidrogeles/química , Animales , Piel/metabolismo , Absorción Cutánea , Interacciones Hidrofóbicas e Hidrofílicas
13.
Int J Pharm ; 655: 124071, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38554738

RESUMEN

In vitro permeation studies play a crucial role in early formulation optimisation before extensive animal model investigations. Biological membranes are typically used in these studies to mimic human skin conditions accurately. However, when focusing on protein and peptide transdermal delivery, utilising biological membranes can complicate analysis and quantification processes. This study aims to explore Parafilm®M and Strat-M® as alternatives to dermatomed porcine skin for evaluating protein delivery from dissolving microarray patch (MAP) platforms. Initially, various MAPs loaded with different model proteins (ovalbumin, bovine serum albumin and amniotic mesenchymal stem cell metabolite products) were prepared. These dissolving MAPs underwent evaluation for insertion properties and in vitro permeation profiles when combined with different membranes, dermatomed porcine skin, Parafilm®M, and Strat-M®. Insertion profiles indicated that both Parafilm®M and Strat-M® showed comparable insertion depths to dermatomed porcine skin (in range of 360-430 µm), suggesting promise as membrane substitutes for insertion studies. In in vitro permeation studies, synthetic membranes such as Parafilm®M and Strat-M® demonstrated the ability to bypass protein-derived skin interference, providing more reliable results compared to dermatomed neonatal porcine skin. Consequently, these findings present valuable tools for preliminary screening across various MAP formulations, especially in the transdermal delivery of proteins and peptides.


Asunto(s)
Parafina , Absorción Cutánea , Animales , Porcinos , Recién Nacido , Humanos , Parafina/metabolismo , Membranas Artificiales , Piel/metabolismo , Administración Cutánea , Preparaciones Farmacéuticas/metabolismo
14.
Drug Deliv Transl Res ; 14(1): 208-222, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37477867

RESUMEN

Research on the use of microarray patches (MAPs) has progressed at an unprecedented rate over the years, leading to the development of many novel drug delivery systems. As the technology approaches patients, there are several key aspects that ought to be addressed in order to facilitate the smooth translation of MAPs from bench to bedside. One integral factor includes the choice of devices and packaging for the storage of MAPs. In the current work, a slide-and-seal box, MAP-box, was developed for the storage of dissolving MAPs, using fused-deposition modelling. The device has been designed to act as a pill-box for MAPs not only to provide protection for MAPs from the environment, but also to improve patient's adherence to treatment. The overall design of the MAP-box was simple, yet offers the capability of sealing and protecting dissolving MAPs up to 30 days. Donepezil HCl was formulated into a dissolvable MAP, which was used to treat dementia related to Alzheimer's disease. This compound was used as a model formulation to evaluate the utility of the 3D printed MAP-box when placed under three storage conditions: 5 °C and ambient humidity, 25 °C and 65% relative humidity and 40 °C and 75% relative humidity. It was shown that the slide-and-seal box was able to confer protection to MAPs for up to 30 days under accelerated stability study conditions as the drug loading, mechanical properties and insertion properties of MAPs remained unaffected when compared to the unpackaged MAPs stored under these same parameters. These preliminary data provide evidence that the MAP-box prototype may be of great utility for the storage of single or multiple MAPs. Nevertheless, future work will be needed to evaluate their patient usability and its application to different types of MAP systems to fully validate the overall robustness of the prototype.


Asunto(s)
Sistemas de Liberación de Medicamentos , Agujas , Humanos , Administración Cutánea , Parche Transdérmico , Impresión Tridimensional
15.
Artículo en Inglés | MEDLINE | ID: mdl-39313735

RESUMEN

The current investigation aims to address the limitations of conventional cancer therapy by developing an advanced, long-term drug delivery system using biocompatible Rose Bengal (RB)-loaded polyvinyl alcohol (PVA) matrices incorporated into 3D printed polycaprolactone (PCL) and polylactic acid (PLA) implants. The anticancer drug RB's high solubility and low lipophilicity require frequent and painful administration to the tumour site, limiting its clinical application. In this study, RB was encapsulated in a PVA (RB@PVA) matrix to overcome these challenges and achieve a localised and sustained drug release system within a biodegradable implant designed to be implanted near the tumour site. The RB@PVA matrix demonstrated an RB loading efficiency of 77.34 ± 1.53%, with complete RB release within 30 min. However, when integrated into implants, the system provided a sustained RB release of 75.84 ± 8.75% over 90 days. Cytotoxicity assays on PC-3 prostate cancer cells indicated an IC50 value of 1.19 µM for RB@PVA compared to 2.49 µM for free RB, effectively inhibiting cancer cell proliferation. This innovative drug delivery system, which incorporates a polymer matrix within an implantable device, represents a significant advancement in the sustained release of hydrosoluble drugs. It holds promise for reducing the frequency of drug administration, thereby improving patient compliance and translating experimental research into practical therapeutic applications.

16.
Adv Healthc Mater ; 13(17): e2304082, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38471772

RESUMEN

Dissolving microarray patches (DMAPs) represent an innovative approach to minimally invasive transdermal drug delivery, demonstrating efficacy in delivering both small and large therapeutic molecules. However, concerns raised in end-user surveys have hindered their commercialization efforts. One prevalent issue highlighted in these surveys is the lack of clear indicators for successful patch insertion and removal time. To address this challenge, a color-change-based feedback system is devised, which confirms the insertion and dissolution of DMAPs, aiming to mitigate the aforementioned problems. The approach combines hydrophilic needles containing model drugs (fluorescein sodium and fluorescein isothiocyanate (FITC)-dextran) with a hydrophobic poly(lactic acid) baseplate infused with moisture-sensitive silica gel particles. The successful insertion and subsequent complete dissolution of the needle shaft are indicated by the progressive color change of crystal violet encapsulated in the silica. Notably, distinct color alterations on the baseplate, observed 30 min and 1 h after insertion for FITC-dextran and fluorescein sodium DMAPs respectively, signal the full dissolution of the needles, confirming the complete cargo delivery and enabling timely patch removal. This innovative feedback system offers a practical solution for addressing end-user concerns and may significantly contribute to the successful commercialization of DMAPs by providing a visualized drug delivery method.


Asunto(s)
Sistemas de Liberación de Medicamentos , Poliésteres , Dióxido de Silicio , Dióxido de Silicio/química , Poliésteres/química , Sistemas de Liberación de Medicamentos/métodos , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Dextranos/química , Administración Cutánea , Interacciones Hidrofóbicas e Hidrofílicas
17.
Int J Pharm ; 665: 124642, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39208953

RESUMEN

As of 2023, more than 200 million people worldwide are living with osteoporosis. Oral bisphosphonates (BPs) are the primary treatment but can cause gastrointestinal (GI) side effects, reducing patient compliance. Microarray (MAP) technology has the potential to overcome GI irritation by facilitating the transdermal delivery of BPs. This study examines the delivery of alendronic acid (ALN) and risedronate sodium (RDN) using dissolving and hydrogel-forming MAPs for osteoporosis treatment. In vivo testing on osteoporotic female Sprague Dawley rats demonstrated the efficacy of MAPs, showing significant improvements in mean serum and bone alkaline phosphatase levels, bone volume, and porosity compared to untreated bilateral ovariectomy (OVX) controls. Specifically, MAP treatment increased mean bone volume to 55.04 ± 2.25 % versus 47.16 ± 1.71 % in OVX controls and reduced porosity to 44.30 ± 2.97 % versus 52.84 ± 1.70 % in the distal epiphysis of the femur. In the distal metaphysis, bone volume increased to 43.32 ± 3.24 % in MAP-treated rats compared to 24.31 ± 3.21 % in OVX controls, while porosity decreased to 55.39 ± 5.81 % versus 75.69 ± 3.21 % in OVX controls. This proof-of-concept study indicates that MAP technology has the potential to be a novel, patient-friendly alternative for weekly osteoporosis management.

18.
Langmuir ; 29(4): 1045-53, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23256509

RESUMEN

The phase behavior of two types of poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) copolymers in aqueous solutions was studied by light scattering, viscometry, and infrared spectroscopy. Both the reverse poloxamer (Pluronic 10R5) and the star type poloxamine (Tetronic 90R4) have practically the same PEO/PPO ratio with their hydrophobic blocks (PPO) located in the outer part. The temperature-composition phase diagrams show that both 10R5 and 90R4 tend to form aggregates in water. Up to four different phases can be detected in the case of Tetronic 90R4 for each temperature: unimers, random networks, micellar networks, and macrophase separation. Viscometric and infrared measurements complemented the results obtained by light scattering and visual inspection.

19.
Polymers (Basel) ; 15(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37765567

RESUMEN

The creation of scaffolds for cartilage tissue engineering has faced significant challenges in developing constructs that can provide sufficient biomechanical support and offer suitable degradation characteristics. Ideally, such tissue-engineering techniques necessitate the fabrication of scaffolds that mirror the mechanical characteristics of the articular cartilage while degrading safely without damaging the regenerating tissues. The aim of this study was to create porous, biomechanically comparable 3D-printed scaffolds made from Poly(L-lactide-co-glycolide) 85:15 and to assess their degradation at physiological conditions 37 °C in pH 7.4 phosphate-buffered saline (PBS) for up to 56 days. Furthermore, the effect of scaffold degradation on the cell viability and proliferation of human bone marrow mesenchymal stem cells (HBMSC) was evaluated in vitro. To assess the long-term degradation of the scaffolds, accelerated degradation tests were performed at an elevated temperature of 47 °C for 28 days. The results show that the fabricated scaffolds were porous with an interconnected architecture and had comparable biomechanical properties to native cartilage. The degradative changes indicated stable degradation at physiological conditions with no significant effect on the properties of the scaffold and biocompatibility of the scaffold to HBMSC. Furthermore, the accelerated degradation tests showed consistent degradation of the scaffolds even in the long term without the notable release of acidic byproducts. It is hoped that the fabrication and degradation characteristics of this scaffold will, in the future, translate into a potential medical device for cartilage tissue regeneration.

20.
Int J Pharm ; 641: 123058, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37207858

RESUMEN

3D Printing is an innovative technology within the pharma and food industries that allows the design and manufacturing of novel delivery systems. Orally safe delivery of probiotics to the gastrointestinal tract faces several challenges regarding bacterial viability, in addition to comply with commercial and regulatory standpoints. Lactobacillus rhamnosus CNCM I-4036 (Lr) was microencapsulated in generally recognised as safe (GRAS) proteins, and then assessed for robocasting 3D printing. Microparticles (MP-Lr) were developed and characterised, prior to being 3D printed with pharmaceutical excipients. MP-Lr showed a size of 12.3 ± 4.1 µm and a non-uniform wrinkled surface determined by Scanning Electron Microscopy (SEM). Bacterial quantification by plate counting accounted for 8.68 ± 0.6 CFU/g of live bacteria encapsulated within. Formulations were able to keep the bacterial dose constant upon contact with gastric and intestinal pH. Printlets consisted in oval-shape formulations (15 mm × 8 mm × 3.2 mm) of ca. 370 mg of total weight, with a uniform surface. After the 3D printing process, bacterial viability remained even as MP-Lr protected bacteria alongside the process (log reduction of 0.52, p > 0.05) in comparison with non-encapsulated probiotic (log reduction of 3.05). Moreover, microparticle size was not altered during the 3D printing process. We confirmed the success of this technology for developing an orally safe formulation, GRAS category, of microencapsulated Lr for gastrointestinal vehiculation.


Asunto(s)
Lacticaseibacillus rhamnosus , Probióticos , Tracto Gastrointestinal , Intestinos/microbiología , Viabilidad Microbiana , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA