RESUMEN
Class 1 integrons are widespread genetic elements playing a major role in the dissemination of antibiotic resistance. They allow bacteria to capture, express and exchange antibiotic resistance genes embedded within gene cassettes. Acquisition of gene cassettes is catalysed by the class 1 integron integrase, a site-specific recombinase playing a key role in the integron system. In in vitro planktonic culture, expression of intI1 is controlled by the SOS response, a regulatory network which mediates the repair of DNA damage caused by a wide range of bacterial stress, including antibiotics. However, in vitro experimental conditions are far from the real lifestyle of bacteria in natural environments such as the intestinal tract which is known to be a reservoir of integrons. In this study, we developed an in vivo model of intestinal colonization in gnotobiotic mice and used a recombination assay and quantitative real-time PCR, to investigate the induction of the SOS response and expression and activity of the class 1 integron integrase, IntI1. We found that the basal activity of IntI1 was higher in vivo than in vitro. In addition, we demonstrated that administration of a subinhibitory concentration of ciprofloxacin rapidly induced both the SOS response and intI1 expression that was correlated with an increase of the activity of IntI1. Our findings show that the gut is an environment in which the class 1 integron integrase is induced and active, and they highlight the potential role of integrons in the acquisition and/or expression of resistance genes in the gut, particularly during antibiotic therapy.
Asunto(s)
Integrasas , Integrones , Intestinos , Animales , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana , Integrasas/genética , Integrasas/metabolismo , Integrones/genética , RatonesRESUMEN
OBJECTIVES: The construction and validation of a set of Yarrowia lipolytica CRISPR/Cas9 vectors containing six different markers that allows virtually any genetic background to be edited, including those of wild-type strains. RESULTS: Using the Golden Gate method, we assembled a set of six CRISPR/Cas9 vectors, each containing a different selection marker, to be used for editing the genome of the industrial yeast Y. lipolytica. This vector set is available via Addgene. Any guide RNA (gRNA) sequence can be easily and rapidly introduced in any of these vectors using Golden Gate assembly. We successfully edited six different genes in a variety of genetic backgrounds, including those of wild-type strains, with five of the six vectors. Use of these vectors strongly improved homologous recombination and cassette integration at a specific locus. CONCLUSIONS: We have created a versatile and modular set of CRISPR/Cas9 vectors that will allow any Y. lipolytica strain to be rapidly edited; this tool will facilitate experimentation with any prototroph wild-type strains displaying interesting features.
Asunto(s)
Proteínas Fúngicas/genética , Edición Génica/métodos , Yarrowia/crecimiento & desarrollo , Sistemas CRISPR-Cas , Recombinación Homóloga , Mutación , ARN Guía de Kinetoplastida/genética , Yarrowia/genéticaRESUMEN
The non-conventional model yeast Yarrowia lipolytica is of increasing interest as a cell factory for producing recombinant proteins or biomolecules with biotechnological or pharmaceutical applications. To further develop the yeast's efficiency and construct inducible promoters, it is crucial to better understand and engineer promoter architecture. Four conserved cis-regulatory modules (CRMs) were identified via phylogenetic footprinting within the promoter regions of EYD1 and EYK1, two genes that have recently been shown to be involved in erythritol catabolism. Using CRM mutagenesis and hybrid promoter construction, we identified four upstream activation sequences (UASs) that are involved in promoter induction by erythritol. Using RedStarII fluorescence as a reporter, the strength of the promoters and the degree of erythritol-based inducibility were determined in two genetic backgrounds: the EYK1 wild type and the eyk1Δ mutant. We successfully developed inducible promoters with variable strengths, which ranged from 0.1 SFU/h to 457.5 SFU/h. Erythritol-based induction increased 2.2 to 32.3 fold in the EYK1 + wild type and 2.9 to 896.1 fold in the eyk1Δ mutant. This set of erythritol-inducible hybrid promoters could allow the modulation and fine-tuning of gene expression levels. These promoters have direct applications in protein production, metabolic engineering and synthetic biology.
Asunto(s)
Eritritol/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Ingeniería Genética/métodos , Regiones Promotoras Genéticas , Activación Transcripcional/efectos de los fármacos , Yarrowia/genéticaRESUMEN
The increasing market demands of ß-carotene as colorant, antioxidant and vitamin precursor, requires novel biotechnological production platforms. Yarrowia lipolytica, is an industrial organism unable to naturally synthesize carotenoids but with the ability to produce high amounts of the precursor Acetyl-CoA. We first found that a lipid overproducer strain was capable of producing more ß-carotene than a wild type after expressing the heterologous pathway. Thereafter, we developed a combinatorial synthetic biology approach base on Golden Gate DNA assembly to screen the optimum promoter-gene pairs for each transcriptional unit expressed. The best strain reached a production titer of 1.5 g/L and a maximum yield of 0.048 g/g of glucose in flask. ß-carotene production was further increased in controlled conditions using a fed-batch fermentation. A total production of ß-carotene of 6.5 g/L and 90 mg/g DCW with a concomitant production of 42.6 g/L of lipids was achieved. Such high titers suggest that engineered Y. lipolytica is a competitive producer organism of ß-carotene.
Asunto(s)
Biología Sintética/métodos , Yarrowia/genética , Yarrowia/metabolismo , beta Caroteno/metabolismo , Biotecnología , Escherichia coli/genética , Redes y Vías Metabólicas , Regiones Promotoras GenéticasRESUMEN
The oleaginous yeast Yarrowia lipolytica has emerged as a powerful alternative for biolipid production due to its high capacity for lipid accumulation. Genetic engineering and synthetic biology are promoted forward to improve production and reroute metabolism for high-value compound synthesis. In this context, efficient, modular, and high-throughput compatible cloning and expression system are required to speed up and rationalize research in this field. Here, we present the fast and modular Golden Gate cloning strategy for the construction of multigene expression vectors and their transformation into Y. lipolytica. As an example, we used the heterologous expression of the carotenoid pathway by cloning three genes involved in this pathway in only one vector allowing reaching production of ß-carotene after a single transformation.
Asunto(s)
Yarrowia , Clonación Molecular , Ingeniería Genética/métodos , Biología Sintética/métodos , Yarrowia/genética , Yarrowia/metabolismo , beta Caroteno/genética , beta Caroteno/metabolismoRESUMEN
Yarrowia lipolytica is widely used as a microbial producer of lipids and lipid derivatives. Here, we exploited this yeast's potential to generate aromatic amino acids by developing chassis strains optimized for the production of phenylalanine, tyrosine and tryptophan. We engineered the shikimate pathway to overexpress a combination of Y. lipolytica and heterologous feedback-insensitive enzyme variants. Our best chassis strain displayed high levels of de novo Ehrlich metabolite production (up to 0.14 g l-1 in minimal growth medium), which represented a 93-fold increase compared to the wild-type strain (0.0015 g l-1 ). Production was further boosted to 0.48 g l-1 when glycerol, a low-cost carbon source, was used, concomitantly to high secretion of phenylalanine precursor (1 g l-1 ). Among these metabolites, 2-phenylethanol is of particular interest due to its rose-like flavour. We also established a production pathway for generating protodeoxyviolaceinic acid, a dye derived from tryptophan, in a chassis strain optimized for chorismate, the precursor of tryptophan. We have thus demonstrated that Y. lipolytica can serve as a platform for the sustainable de novo bio-production of high-value aromatic compounds, and we have greatly improved our understanding of the potential feedback-based regulation of the shikimate pathway in this yeast.
Asunto(s)
Yarrowia , Aminoácidos Aromáticos , Glicerol , Ingeniería Metabólica , Tirosina , Yarrowia/genéticaRESUMEN
The yeast Yarrowia lipolytica naturally produces pyomelanin. This pigment accumulates in the extracellular environment following the autoxidation and polymerization of homogentisic acid, a metabolite derived from aromatic amino acids. In this study, we used a chassis strain optimized to produce aromatic amino acids for the de novo overproduction of pyomelanin. The gene 4HPPD, which encodes an enzyme involved in homogentisic acid synthesis (4-hydroxyphenylpyruvic acid dioxygenase), was characterized and overexpressed in the chassis strain with up to three copies, leading to pyomelanin yields of 4.5 g/L. Homogentisic acid is derived from tyrosine. When engineered strains were grown in a phenylalanine-supplemented medium, pyomelanin production increased, revealing that the yeast could convert phenylalanine to tyrosine, or that the homogentisic acid pathway is strongly induced by phenylalanine.
RESUMEN
Yarrowia lipolytica has emerged as an alternative expression system for heterologous protein production and enzyme evolution. Several different expression systems dedicated for this species have been developed, ranging from the simple cloning of expression vectors to recently developed high-throughput methodologies using efficient cloning and assembly such as Gateway and Golden Gate strategies. The latter strategies, due to their modular character, enable multiple vector construction and the construction of expression cassettes containing different genes or a gene under different promoters of various strengths.Here, we present the Golden Gate cloning strategy for the construction of multiple expression cassettes, the transformation into Y. lipolytica, and the selection of efficient enzyme-producing strains using an insect alpha-amylase as a reporter detected via a thermal cycler-based microassay.
Asunto(s)
Regiones Promotoras Genéticas/genética , Yarrowia/genética , Proteínas Fúngicas/genética , Vectores Genéticos/genéticaRESUMEN
The oleaginous yeast Yarrowia lipolytica is an established host for the bio-based production of valuable compounds and an organism for which many genetic tools have been developed. However, to properly engineer Y. lipolytica and take full advantage of its potential, we need efficient, versatile, standardized and modular cloning tools. Here, we present a new modular Golden Gate toolkit for the one-step assembly of three transcription units that includes a selective marker and sequences for genome integration. Perfectly suited to a combinatorial approach, it contains nine different validated promoters, including inducible promoters, which allows expression to be fine-tuned. Moreover, this toolbox incorporates six different markers (three auxotrophic markers, two antibiotic-resistance markers and one metabolic marker), which allows the fast sequential construction and transformation of multiple elements. In total, the toolbox contains 64 bricks, and it has been validated and characterized using three different fluorescent reporter proteins. Additionally, it was successfully used to assemble and integrate a three-gene pathway allowing xylose utilization by Y. lipolytica. This toolbox provides a powerful new tool for rapidly engineering Y. lipolytica strains and is available to the community through Addgene.
Asunto(s)
Genética Microbiana/métodos , Ingeniería Metabólica/métodos , Biología Sintética/métodos , Yarrowia/genética , Microbiología Industrial/métodosRESUMEN
Synthetic biology is an emergent field of research whose aim is to make biology an engineering discipline, thus permitting to design, control, and standardize biological processes. Synthetic biology is therefore expected to boost the development of biotechnological processes such as protein production and enzyme engineering, which can be significantly relevant for lipases and esterases.
Asunto(s)
Esterasas/biosíntesis , Lipasa/biosíntesis , Ingeniería Metabólica/métodos , Biología Sintética/métodos , BiotecnologíaRESUMEN
In this study, we have adopted Golden Gate modular cloning strategy to develop a robust and versatile DNA assembly platform for the nonconventional yeast Yarrowia lipolytica. To this end, a broad set of destination vectors and interchangeable building blocks have been constructed. The DNA modules were assembled on a scaffold of predesigned 4 nt overhangs covering three transcription units (each bearing promoter, gene and terminator), selection marker gene and genomic integration targeting sequences, constituting altogether thirteen elements. Previously validated DNA modules (regulatory elements and selection markers) were adopted as the Golden Gate bricks. The system's operability was demonstrated based on synthetic pathway of carotenoid production. This technology greatly enriches a molecular biology toolbox dedicated to this industrially relevant microorganism enabling fast combinatorial cloning of complex synthetic pathways.