Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 324(5): E390-E401, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791323

RESUMEN

There is a debate on whether lipid-mediated insulin resistance derives from an increased or decreased capacity of muscle to oxidize fats. Here, we examine the involvement of muscle fiber composition in the metabolic responses to a 3-day fast (starvation, which results in increases in plasma lipids and insulin resistance) in two groups of healthy young subjects: 1), area occupied by type I fibers = 61.0 ± 11.8%; 2), type I area = 36.0 ± 4.9% (P < 0.001). Muscle biopsies and intravenous glucose tolerance tests were performed after an overnight fast and after starvation. Biopsies were analyzed for muscle fiber composition and mitochondrial respiration. Indices of glucose tolerance and insulin sensitivity were determined. Glucose tolerance was similar in both groups after an overnight fast and deteriorated to a similar degree in both groups after starvation. In contrast, whole body insulin sensitivity decreased markedly after starvation in group 1 (P < 0.01), whereas the decrease in group 2 was substantially smaller (P = 0.06). Nonesterified fatty acids and ß-hydroxybutyrate levels in plasma after an overnight fast were similar between groups and increased markedly and comparably in both groups after starvation, demonstrating similar degrees of lipid load. The capacity of permeabilized muscle fibers to oxidize lipids was significantly higher in group 1 versus 2, whereas there was no significant difference in pyruvate oxidation between groups. The data demonstrate that loss of whole body insulin sensitivity after short-term starvation is a function of muscle fiber composition and is associated with an elevated rather than a diminished capacity of muscle to oxidize lipids.NEW & NOTEWORTHY Whether lipid-mediated insulin resistance occurs as a result of an increased or decreased capacity of skeletal muscle to oxidize lipids has been debated. We show that a 3-day fast results in increases in circulating lipids and insulin resistance in subjects expressing a high or low proportion of type I muscle fibers. High expression of type I is associated with a higher capacity to oxidize lipids and a greater loss of insulin sensitivity after starvation.


Asunto(s)
Resistencia a la Insulina , Inanición , Humanos , Ácidos Grasos no Esterificados/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Inanición/metabolismo , Lípidos , Metabolismo de los Lípidos , Oxidación-Reducción
2.
J Physiol ; 600(20): 4421-4438, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36069036

RESUMEN

Fibre type-specific analyses are required for broader understanding of muscle physiology, but such analyses are difficult to conduct due to the extreme time requirements of dissecting and fibre typing individual fibres. Investigations are often confined to a small number of fibres from few participants with low representativeness of the entire fibre population and the participant population. To increase the feasibility of conducting large-scale fibre type-specific studies, a valid and rapid method for high-throughput fibre typing of individually dissected fibres was developed and named THRIFTY (for high-THRoughput Immunofluorescence Fibre TYping). Employing THRIFTY, 400 fibre segments were fixed onto microscope slides with a pre-printed coordinated grid system, probed with antibodies against myosin heavy chain (MyHC)-I and MyHC-II and classified using a fluorescence microscope. The validity and speed of THRIFTY was compared to a previously validated protocol (dot blot) on a fibre-to-fibre basis. Fibre pool purity was evaluated using 'gold standard' SDS-PAGE and silver staining. A modified THRIFTY-protocol using fluorescence western blot equipment was also validated. THRIFTY displayed excellent agreement with the dot blot protocol, κ = 0.955 (95% CI: 0.928, 0.982), P < 0.001. Both the original and modified THRIFTY protocols generated type I and type II fibre pools of absolute purity. Using THRIFTY, 400 fibres were typed just under 11 h, which was approximately 3 times faster than dot blot. THRIFTY is a novel and valid method with high versatility for very rapid fibre typing of individual fibres. THRIFTY can therefore facilitate the generation of large fibre pools for more extensive mechanistic studies into skeletal muscle physiology. KEY POINTS: Skeletal muscle is composed of different fibre types, each with distinct physiological properties. To fully understand how skeletal muscle adapts to external cues such as exercise, nutrition and ageing, fibre type-specific investigations are required. Such investigations are very difficult to conduct due to the extreme time requirements related to classifying individually isolated muscle fibres. To bypass this issue, we have developed a rapid and reliable method named THRIFTY which is cheap as well as versatile and which can easily be implemented in most laboratories. THRIFTY increases the feasibility of conducting larger fibre type-specific studies and enables time-sensitive assays where measurements need to be carried out in close connection with tissue sampling. By using THRIFTY, new insights into fibre type-specific muscle physiology can be gained which may have broad implications in health and disease.


Asunto(s)
Fibras Musculares Esqueléticas , Cadenas Pesadas de Miosina , Western Blotting , Ejercicio Físico , Humanos , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología
3.
Scand J Med Sci Sports ; 31(2): 303-312, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33038024

RESUMEN

The repair, remodeling, and regeneration of myofibers are dependent on satellite cells (SCs), although, the distribution of SCs in different fiber types of human muscle remains inconclusive. There is also a paucity of research comparing muscle fiber characteristics in a sex-specific manner. Therefore, the aim of this study was to investigate fiber type-specific SC content in men and women. Muscle biopsies from vastus lateralis were collected from 64 young (mean age 27 ± 5), moderately trained men (n = 34) and women (n = 30). SCs were identified by Pax7-staining together with immunofluorescent analyses of fiber type composition, fiber size, and myonuclei content. In a mixed population, comparable number of SCs was associated to type I and type II fibers (0.07 ± 0.02 vs 0.07 ± 0.02 SCs per fiber, respectively). However, unlike men, women displayed a fiber type-specific distribution, with SC content being lower in type II than type I fibers (P = .041). Sex-based differences were found specifically for type II fibers, where women displayed lower SC content compared to men (P < .001). In addition, positive correlations (r-values between 0.36-0.56) were found between SC content and type I and type II fiber size in men (P = .03 and P < .01, respectively), whereas similar relationships could not be detected in women. Sex-based differences were also noted for fiber type composition and fiber size, but not for myonuclei content. We hereby provide evidence for sex-based differences present at the myocellular level, which may have important implications when studying exercise- and training-induced myogenic responses in skeletal muscle.


Asunto(s)
Fibras Musculares Esqueléticas/citología , Células Satélite del Músculo Esquelético/citología , Factores Sexuales , Adulto , Núcleo Celular , Ejercicio Físico/fisiología , Femenino , Humanos , Inmunohistoquímica , Masculino , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/anatomía & histología , Músculo Esquelético/química , Músculo Esquelético/citología , Factor de Transcripción PAX7/análisis , Músculo Cuádriceps/anatomía & histología , Músculo Cuádriceps/química , Músculo Cuádriceps/citología , Células Satélite del Músculo Esquelético/ultraestructura , Factores de Tiempo , Adulto Joven
4.
FASEB J ; 30(1): 417-27, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26452378

RESUMEN

Intense exercise training is a powerful stimulus that activates mitochondrial biogenesis pathways and thus increases mitochondrial density and oxidative capacity. Moderate levels of reactive oxygen species (ROS) during exercise are considered vital in the adaptive response, but high ROS production is a serious threat to cellular homeostasis. Although biochemical markers of the transition from adaptive to maladaptive ROS stress are lacking, it is likely mediated by redox sensitive enzymes involved in oxidative metabolism. One potential enzyme mediating such redox sensitivity is the citric acid cycle enzyme aconitase. In this study, we examined biopsy specimens of vastus lateralis and triceps brachii in healthy volunteers, together with primary human myotubes. An intense exercise regimen inactivated aconitase by 55-72%, resulting in inhibition of mitochondrial respiration by 50-65%. In the vastus, the mitochondrial dysfunction was compensated for by a 15-72% increase in mitochondrial proteins, whereas H2O2 emission was unchanged. In parallel with the inactivation of aconitase, the intermediary metabolite citrate accumulated and played an integral part in cellular protection against oxidative stress. In contrast, the triceps failed to increase mitochondrial density, and citrate did not accumulate. Instead, mitochondrial H2O2 emission was decreased to 40% of the pretraining levels, together with a 6-fold increase in protein abundance of catalase. In this study, a novel mitochondrial stress response was highlighted where accumulation of citrate acted to preserve the redox status of the cell during periods of intense exercise.


Asunto(s)
Aconitato Hidratasa/metabolismo , Respiración de la Célula , Ejercicio Físico , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Adulto , Células Cultivadas , Ácido Cítrico/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Músculo Esquelético/enzimología , Músculo Esquelético/fisiología , Estrés Oxidativo , Esfuerzo Físico
5.
Am J Physiol Cell Physiol ; 311(3): C452-61, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27486093

RESUMEN

Resting metabolic rate (RMR) in humans shows pronounced individual variations, but the underlying molecular mechanism remains elusive. Cytochrome c oxidase (COX) plays a key role in control of metabolic rate, and recent studies of the subunit 4 isoform 2 (COX IV-2) indicate involvement in the cellular response to hypoxia and oxidative stress. We evaluated whether the COX subunit IV isoform composition may explain the pronounced individual variations in resting metabolic rate (RMR). RMR was determined in healthy humans by indirect calorimetry and correlated to levels of COX IV-2 and COX IV-1 in vastus lateralis. Overexpression and knock down of the COX IV isoforms were performed in primary myotubes followed by evaluation of the cell respiration and production of reactive oxygen species. Here we show that COX IV-2 protein is constitutively expressed in human skeletal muscle and strongly correlated to RMR. Primary human myotubes overexpressing COX IV-2 displayed markedly (>60%) lower respiration, reduced (>50%) cellular H2O2 production, higher resistance toward both oxidative stress, and severe hypoxia compared with control cells. These results suggest an important role of isoform COX IV-2 in the control of energy expenditure, hypoxic tolerance, and mitochondrial ROS homeostasis in humans.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético/fisiología , Adulto , Células Cultivadas , Homeostasis/fisiología , Humanos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
6.
FASEB J ; 28(10): 4303-11, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24970395

RESUMEN

The maximum power principle dictates that open biological systems tend to self-organize to a level of efficiency that allows maximal power production. Applying this principle to cellular energetics and whole-body physiology would suggest that for every metabolic challenge, an optimal efficiency exists that maximizes power production. On exposure to hypoxia, it would be favorable if metabolic efficiency would rapidly adjust so as to better preserve work performance. We tested this idea in humans by measuring metabolic efficiency and exercise tolerance under normoxic (Fio2=20.9%) and hypoxic (Fio2=16%) conditions, where Fio2 is fraction of inhaled oxygen. The results were compared with respirometric analyses of skeletal muscle mitochondria from the same individuals. We found that among healthy trained subjects (n=14) with a wide range of metabolic efficiency (ME), those with a high ME during normoxic exercise were able to better maintain exercise capacity (Wmax) in hypoxia. On hypoxic exposure, these subjects acutely decreased their efficiency from 19.2 to 17.4%, thereby likely shifting it closer to a degree of efficiency where maximal power production is achieved. In addition, mitochondria from these subjects had a lower intrinsic respiration compared to subjects that showed a large drop in Wmax in hypoxia An acute shift in efficiency was also demonstrated in isolated mitochondria exposed to physiological levels of hypoxia as P/O ratio increased from 0.9 to 1.3 with hypoxic exposure. These findings suggest the existence of a physiological adaptive response by which metabolic efficiency is dynamically optimized to maximize power production.


Asunto(s)
Respiración de la Célula , Tolerancia al Ejercicio , Ejercicio Físico , Hipoxia/metabolismo , Consumo de Oxígeno , Adulto , Metabolismo Energético , Humanos , Masculino , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología
7.
Sports Med ; 54(2): 247-255, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37658967

RESUMEN

Blood glucose regulation has been studied for well over a century as it is intimately related to metabolic health. Research in glucose transport and uptake has also been substantial within the field of exercise physiology as glucose delivery to the working muscles affects exercise capacity and athletic achievements. However, although exceptions exist, less focus has been on blood glucose as a parameter to optimize training and competition outcomes in athletes with normal glucose control. During the last years, measuring glucose has gained popularity within the sports community and successful endurance athletes have been seen with skin-mounted sensors for continuous glucose monitoring (CGM). The technique offers real-time recording of glucose concentrations in the interstitium, which is assumed to be equivalent to concentrations in the blood. Although continuous measurements of a parameter that is intimately connected to metabolism and health can seem appealing, there is no current consensus on how to interpret measurements within this context. Well-defined approaches to use glucose monitoring to improve endurance athletes' performance and health are lacking. In several studies, blood glucose regulation in endurance athletes has been shown to differ from that in healthy controls. Furthermore, endurance athletes regularly perform demanding training sessions and can be exposed to high or low energy and/or carbohydrate availability, which can affect blood glucose levels and regulation. In this current opinion, we aim to discuss blood glucose regulation in endurance athletes and highlight the existing research on glucose monitoring for performance and health in this population.


Asunto(s)
Rendimiento Atlético , Glucemia , Humanos , Automonitorización de la Glucosa Sanguínea , Ejercicio Físico/fisiología , Monitoreo Continuo de Glucosa , Resistencia Física/fisiología , Atletas , Rendimiento Atlético/fisiología , Glucosa
8.
Mol Metab ; 79: 101854, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104652

RESUMEN

OBJECTIVE: Human skeletal muscle consists of a mixture of slow- and fast-twitch fibers with distinct capacities for contraction mechanics, fermentation, and oxidative phosphorylation. While the divergence in mitochondrial volume favoring slow-twitch fibers is well established, data on the fiber type-specific intrinsic mitochondrial function and morphology are highly limited with existing data mainly being generated in animal models. This highlights the need for more human data on the topic. METHODS: Here, we utilized THRIFTY, a rapid fiber type identification protocol to detect, sort, and pool fast- and slow-twitch fibers within 6 h of muscle biopsy sampling. Respiration of permeabilized fast- and slow-twitch fiber pools was then analyzed with high-resolution respirometry. Using standardized western blot procedures, muscle fiber pools were subsequently analyzed for control proteins and key proteins related to respiratory capacity. RESULTS: Maximal complex I+II respiration was 25% higher in human slow-twitch fibers compared to fast-twitch fibers. However, per mitochondrial volume, the respiratory rate of mitochondria in fast-twitch fibers was approximately 50% higher for complex I+II, which was primarily mediated through elevated complex II respiration. Furthermore, the abundance of complex II protein and proteins regulating cristae structure were disproportionally elevated in mitochondria of the fast-twitch fibers. The difference in intrinsic respiratory rate was not reflected in fatty acid-or complex I respiration. CONCLUSION: Mitochondria of human fast-twitch muscle fibers compensate for their lack of volume by substantially elevating intrinsic respiratory rate through increased reliance on complex II.


Asunto(s)
Contracción Muscular , Fibras Musculares de Contracción Lenta , Animales , Humanos , Fibras Musculares de Contracción Lenta/metabolismo , Contracción Muscular/fisiología , Mitocondrias/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo
9.
Proc Natl Acad Sci U S A ; 107(41): 17716-20, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20876122

RESUMEN

The metabolic syndrome is a clustering of risk factors of metabolic origin that increase the risk for cardiovascular disease and type 2 diabetes. A proposed central event in metabolic syndrome is a decrease in the amount of bioavailable nitric oxide (NO) from endothelial NO synthase (eNOS). Recently, an alternative pathway for NO formation in mammals was described where inorganic nitrate, a supposedly inert NO oxidation product and unwanted dietary constituent, is serially reduced to nitrite and then NO and other bioactive nitrogen oxides. Here we show that several features of metabolic syndrome that develop in eNOS-deficient mice can be reversed by dietary supplementation with sodium nitrate, in amounts similar to those derived from eNOS under normal conditions. In humans, this dose corresponds to a rich intake of vegetables, the dominant dietary nitrate source. Nitrate administration increased tissue and plasma levels of bioactive nitrogen oxides. Moreover, chronic nitrate treatment reduced visceral fat accumulation and circulating levels of triglycerides and reversed the prediabetic phenotype in these animals. In rats, chronic nitrate treatment reduced blood pressure and this effect was also present during NOS inhibition. Our results show that dietary nitrate fuels a nitrate-nitrite-NO pathway that can partly compensate for disturbances in endogenous NO generation from eNOS. These findings may have implications for novel nutrition-based preventive and therapeutic strategies against cardiovascular disease and type 2 diabetes.


Asunto(s)
Síndrome Metabólico/tratamiento farmacológico , Nitratos/farmacología , Óxido Nítrico Sintasa de Tipo III/deficiencia , Análisis de Varianza , Animales , Presión Sanguínea/efectos de los fármacos , Peso Corporal , Suplementos Dietéticos , Grasa Intraabdominal/efectos de los fármacos , Ratones , Ratones Mutantes , Nitratos/administración & dosificación , Óxidos de Nitrógeno/sangre , Óxidos de Nitrógeno/metabolismo , Ratas , Triglicéridos/sangre
10.
Trends Endocrinol Metab ; 34(6): 317-318, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37062666

RESUMEN

Distance running requires a high absolute oxygen consumption, while for a breath-hold diver the opposite is preferable. We compared physiological exercise parameters and mitochondrial function in a competitive triathlete with those seen in an accomplished breath-hold diver and notice some remarkable differences, possibly explaining why both have become successful.


Asunto(s)
Buceo , Liebres , Tortugas , Animales , Humanos , Buceo/fisiología , Contencion de la Respiración , Consumo de Oxígeno/fisiología
11.
Acta Physiol (Oxf) ; 238(4): e13972, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37017615

RESUMEN

AIM: The purpose of this study was to 1. investigate if glucose tolerance is affected after one acute bout of different types of exercise; 2. assess if potential differences between two exercise paradigms are related to changes in mitochondrial function; and 3. determine if endurance athletes differ from nonendurance-trained controls in their metabolic responses to the exercise paradigms. METHODS: Nine endurance athletes (END) and eight healthy nonendurance-trained controls (CON) were studied. Oral glucose tolerance tests (OGTT) and mitochondrial function were assessed on three occasions: in the morning, 14 h after an overnight fast without prior exercise (RE), as well as after 3 h of prolonged continuous exercise at 65% of VO2 max (PE) or 5 × 4 min at ~95% of VO2 max (HIIT) on a cycle ergometer. RESULTS: Glucose tolerance was markedly reduced in END after PE compared with RE. END also exhibited elevated fasting serum FFA and ketones levels, reduced insulin sensitivity and glucose oxidation, and increased fat oxidation during the OGTT. CON showed insignificant changes in glucose tolerance and the aforementioned measurements compared with RE. HIIT did not alter glucose tolerance in either group. Neither PE nor HIIT affected mitochondrial function in either group. END also exhibited increased activity of 3-hydroxyacyl-CoA dehydrogenase activity in muscle extracts vs. CON. CONCLUSION: Prolonged exercise reduces glucose tolerance and increases insulin resistance in endurance athletes the following day. These findings are associated with an increased lipid load, a high capacity to oxidize lipids, and increased fat oxidation.


Asunto(s)
Glucosa , Resistencia a la Insulina , Humanos , Glucosa/metabolismo , Glucemia/metabolismo , Ejercicio Físico/fisiología , Insulina/metabolismo , Atletas , Resistencia Física
12.
PLoS One ; 18(5): e0285581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205681

RESUMEN

BACKGROUND: Inorganic nitrate has been shown to acutely improve working memory in adults, potentially by altering cerebral and peripheral vasculature. However, this remains unknown in adolescents. Furthermore, breakfast is important for overall health and psychological well-being. Therefore, this study will investigate the acute effects of nitrate and breakfast on working memory performance, task-related cerebral blood flow (CBF), arterial stiffness, and psychological outcomes in Swedish adolescents. METHODS: This randomised crossover trial will recruit at least 43 adolescents (13-15 years old). There will be three experimental breakfast conditions: (1) none, (2) low-nitrate (normal breakfast), and (3) high-nitrate (concentrated beetroot juice with normal breakfast). Working memory (n-back tests), CBF (task-related changes in oxygenated and deoxygenated haemoglobin in the prefrontal cortex), and arterial stiffness (pulse wave velocity and augmentation index) will be measured twice, immediately after breakfast and 130 min later. Measures of psychological factors and salivary nitrate/nitrite will be assessed once before the conditions and at two-time points after the conditions. DISCUSSION: This study will provide insight into the acute effects of nitrate and breakfast on working memory in adolescents and to what extent any such effects can be explained by changes in CBF. This study will also shed light upon whether oral intake of nitrate may acutely improve arterial stiffness and psychological well-being, in adolescents. Consequently, results will indicate if nitrate intake from beetroot juice or if breakfast itself could acutely improve cognitive, vascular, and psychological health in adolescents, which can affect academic performance and have implications for policies regarding school meals. TRIAL REGISTRATION: The trial has been prospectively registered on 21/02/2022 at https://doi.org/10.1186/ISRCTN16596056. Trial number: ISRCTN16596056.


Asunto(s)
Beta vulgaris , Rigidez Vascular , Adulto , Humanos , Adolescente , Nitratos , Desayuno , Estudios Cruzados , Memoria a Corto Plazo , Análisis de la Onda del Pulso , Circulación Cerebrovascular , Presión Sanguínea , Suplementos Dietéticos , Ensayos Clínicos Controlados Aleatorios como Asunto
13.
FASEB J ; 25(8): 2843-52, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21576503

RESUMEN

The basal metabolic rate (BMR) is referred to as the minimal rate of metabolism required to support basic body functions. It is well known that individual BMR varies greatly, even when correcting for body weight, fat content, and thyroid hormone levels, but the mechanistic determinants of this phenomenon remain unknown. Here, we show in humans that mass-related BMR correlates strongly to the mitochondrial oxygen affinity (p50(mito); R(2)=0.66, P=0.0004) measured in isolated skeletal muscle mitochondria. A similar relationship was found for oxygen affinity and efficiency during constant-load submaximal exercise (R(2)=0.46, P=0.007). In contrast, BMR did not correlate to overall mitochondrial density or to proton leak. Mechanistically, part of the p50(mito) seems to be controlled by the excess of cytochrome c oxidase (COX) protein and activity relative to other mitochondrial proteins. This is illustrated by the 5-fold increase in p50(mito) after partial cyanide inhibition of COX at doses that do not affect maximal mitochondrial electron flux through the ETS. These data suggest that the interindividual variation in BMR in humans is primarily explained by differences in mitochondrial oxygen affinity. The implications of these findings are discussed in terms of a trade-off between aerobic efficiency and power.


Asunto(s)
Metabolismo Basal/fisiología , Mitocondrias Musculares/metabolismo , Consumo de Oxígeno/fisiología , Adulto , Animales , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Femenino , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Especificidad de Órganos , Esfuerzo Físico/fisiología , Fuerza Protón-Motriz , Especificidad de la Especie , Adulto Joven
14.
Sports Med Open ; 8(1): 136, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333619

RESUMEN

BACKGROUND: The concept of overreaching and super compensation is widely in use by athletes and coaches seeking to maximize performance and adaptations to exercise training. The physiological aspects of acute fatigue, overreaching and non-functional overreaching are, however, not well understood, and well-defined negative physiological outcomes are missing. Instead, the concept relies heavily on performance outcomes for differentiating between the states. Recent advancements in the field of integrated exercise physiology have associated maladaptations in muscular oxidative function to high loads of exercise training. METHOD: Eleven female and male subjects that exercised regularly but did not engage in high-intensity interval training (HIIT) were recruited to a 4-week long training intervention where the responses to different training loads were studied. Highly monitored HIIT sessions were performed on a cycle ergometer in a progressive fashion with the intent to accomplish a training overload. Throughout the intervention, physiological and psychological responses to HIIT were assessed, and the results were used to construct a diagnostic model that could indicate maladaptations during excessive training loads. RESULTS: We here use mitochondrial function as an early marker of excessive training loads and show the dynamic responses of several physiological and psychological measurements during different training loads. During HIIT, a loss of mitochondrial function was associated with reduced glycolytic, glucoregulatory and heart rate responses and increased ratings of perceived exertion in relation to several physiological measurements. The profile of mood states was highly affected after excessive training loads, whereas performance staled rather than decreased. By implementing five of the most affected and relevant measured parameters in a diagnostic model, we could successfully, and in all the subjects, identify the training loads that lead to maladaptations. CONCLUSIONS: As mitochondrial parameters cannot be assessed without donating a muscle biopsy, this test can be used by coaches and exercise physiologists to monitor adaptation to exercise training for improving performance and optimizing the health benefits of exercise. Clinical trial registry number NCT04753021 . Retrospectively registered 2021-02-12.

15.
J Clin Endocrinol Metab ; 107(7): e2729-e2737, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35405014

RESUMEN

CONTEXT: Muscle fiber composition is associated with peripheral insulin action. OBJECTIVE: We investigated whether extreme differences in muscle fiber composition are associated with alterations in peripheral insulin action and secretion in young, healthy subjects who exhibit normal fasting glycemia and insulinemia. METHODS: Relaxation time following a tetanic contraction was used to identify subjects with a high or low expression of type I muscle fibers: group 1 (n = 11), area occupied by type I muscle fibers = 61.0 ± 11.8%, and group 2 (n = 8), type I area = 36.0 ± 4.9% (P < 0.001). Biopsies were obtained from the vastus lateralis muscle and analyzed for mitochondrial respiration on permeabilized fibers, muscle fiber composition, and capillary density. An intravenous glucose tolerance test was performed and indices of glucose tolerance, insulin sensitivity, and secretion were determined. RESULTS: Glucose tolerance was similar between groups, whereas whole-body insulin sensitivity was decreased by ~50% in group 2 vs group 1 (P = 0.019). First-phase insulin release (area under the insulin curve during 10 minutes after glucose infusion) was increased by almost 4-fold in group 2 vs group 1 (P = 0.01). Whole-body insulin sensitivity was correlated with percentage area occupied by type I fibers (r = 0.54; P = 0.018) and capillary density in muscle (r = 0.61; P = 0.005) but not with mitochondrial respiration. Insulin release was strongly related to percentage area occupied by type II fibers (r = 0.93; P < 0.001). CONCLUSIONS: Assessment of muscle contractile function in young healthy subjects may prove useful in identifying individuals with insulin resistance and enhanced glucose-stimulated insulin secretion prior to onset of clinical manifestations.


Asunto(s)
Resistencia a la Insulina , Enfermedades Musculares , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Secreción de Insulina , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Músculo Cuádriceps/metabolismo
16.
Sports Med ; 52(10): 2537-2558, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35604567

RESUMEN

INTRODUCTION: Dietary inorganic nitrate is a popular nutritional supplement, which increases nitric oxide bioavailability and may improve exercise performance. Despite over a decade of research into the effects of dietary nitrate supplementation during exercise there is currently no expert consensus on how, when and for whom this compound could be recommended as an ergogenic aid. Moreover, there is no consensus on the safe administration of dietary nitrate as an ergogenic aid. This study aimed to address these research gaps. METHODS: The modified Delphi technique was used to establish the views of 12 expert panel members on the use of dietary nitrate as an ergogenic aid. Over three iterative rounds (two via questionnaire and one via videoconferencing), the expert panel members voted on 222 statements relating to dietary nitrate as an ergogenic aid. Consensus was reached when > 80% of the panel provided the same answer (i.e. yes or no). Statements for which > 80% of the panel cast a vote of insufficient evidence were categorised as such and removed from further voting. These statements were subsequently used to identify directions for future research. RESULTS: The 12 panel members contributed to voting in all three rounds. A total of 39 statements (17.6%) reached consensus across the three rounds (20 yes, 19 no). In round one, 21 statements reached consensus (11 yes, 10 no). In round two, seven further statements reached consensus (4 yes, 3 no). In round three, an additional 11 statements reached consensus (5 yes, 6 no). The panel agreed that there was insufficient evidence for 134 (60.4%) of the statements, and were unable to agree on the outcome of the remaining statements. CONCLUSIONS: This study provides information on the current expert consensus on dietary nitrate, which may be of value to athletes, coaches, practitioners and researchers. The effects of dietary nitrate appear to be diminished in individuals with a higher aerobic fitness (peak oxygen consumption [V̇O2peak] > 60 ml/kg/min), and therefore, aerobic fitness should be taken into account when considering use of dietary nitrate as an ergogenic aid. It is recommended that athletes looking to benefit from dietary nitrate supplementation should consume 8-16 mmol nitrate acutely or 4-16 mmol/day nitrate chronically (with the final dose ingested 2-4 h pre-exercise) to maximise ergogenic effects, taking into consideration that, from a safety perspective, athletes may be best advised to increase their intake of nitrate via vegetables and vegetable juices. Acute nitrate supplementation up to ~ 16 mmol is believed to be safe, although the safety of chronic nitrate supplementation requires further investigation. The expert panel agreed that there was insufficient evidence for most of the appraised statements, highlighting the need for future research in this area.


Asunto(s)
Sustancias para Mejorar el Rendimiento , Consenso , Técnica Delphi , Suplementos Dietéticos , Humanos , Nitratos
17.
J Hum Kinet ; 79: 187-196, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34400998

RESUMEN

The present study investigated the effects of plyometric jump training on hard and soft surfaces on running economy (RE), maximal oxygen uptake (VO2max), running performance and the rate of force development in orienteers. Nineteen orienteers (11 women and 8 men, body mass 61.1 ± 7.3 kg, age 21 ± 5.8 yrs) were randomly stratified based on sex, age, VO2max and RE to plyometric jumping training (8 sessions over 4 weeks) on either a hard or a soft surface. RE, VO2max and running performance were assessed on a treadmill and outdoor on- and off-trail loops. Moreover, ground reaction forces and force development were assessed during a one leg drop-jump test. The training intervention led to an overall 2-7% improvement in treadmill and off-trail RE, independent of the jumping surface and running velocity assessed. These improvements were not explained by force development during drop jump tests, which remained unchanged following the intervention. The changes in time-trial performance were associated with changes in RE. Plyometric training improved RE with no difference between the hard or the soft training surface and improved RE was also independent of the running speed assessed. Furthermore, improved running performance was associated with changes in RE after the intervention.

18.
Cell Metab ; 33(5): 957-970.e6, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33740420

RESUMEN

Exercise training positively affects metabolic health through increased mitochondrial oxidative capacity and improved glucose regulation and is the first line of treatment in several metabolic diseases. However, the upper limit of the amount of exercise associated with beneficial therapeutic effects has not been clearly identified. Here, we used a training model with a progressively increasing exercise load during an intervention over 4 weeks. We closely followed changes in glucose tolerance, mitochondrial function and dynamics, physical exercise capacity, and whole-body metabolism. Following the week with the highest exercise load, we found a striking reduction in intrinsic mitochondrial function that coincided with a disturbance in glucose tolerance and insulin secretion. We also assessed continuous blood glucose profiles in world-class endurance athletes and found that they had impaired glucose control compared with a matched control group.


Asunto(s)
Mitocondrias/metabolismo , Resistencia Física , Glucemia/análisis , Catalasa/metabolismo , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno/metabolismo , Voluntarios Sanos , Humanos , Peróxido de Hidrógeno/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
19.
J Appl Physiol (1985) ; 131(1): 388-400, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34110230

RESUMEN

The maintenance of healthy and functional mitochondria is the result of a complex mitochondrial turnover and herein quality-control program that includes both mitochondrial biogenesis and autophagy of mitochondria. The aim of this study was to examine the effect of an intensified training load on skeletal muscle mitochondrial quality control in relation to changes in mitochondrial oxidative capacity, maximal oxygen consumption, and performance in highly trained endurance athletes. Elite endurance athletes (n = 27) performed high-intensity interval exercise followed by moderate-intensity continuous exercise 3 days per week for 4 wk in addition to their usual volume of training. Mitochondrial oxidative capacity, abundance of mitochondrial proteins, markers of autophagy, and antioxidant capacity of skeletal muscle were assessed in skeletal muscle biopsies before and after the intensified training period. The intensified training period increased several autophagy markers suggesting an increased turnover of mitochondrial and cytosolic proteins. In permeabilized muscle fibers, mitochondrial respiration was ∼20% lower after training although some markers of mitochondrial density increased by 5%-50%, indicative of a reduced mitochondrial quality by the intensified training intervention. The antioxidative proteins UCP3, ANT1, and SOD2 were increased after training, whereas we found an inactivation of aconitase. In agreement with the lower aconitase activity, the amount of mitochondrial LON protease that selectively degrades oxidized aconitase was doubled. Together, this suggests that mitochondrial respiratory function is impaired during the initial recovery from a period of intensified endurance training whereas mitochondrial quality control is slightly activated in highly trained skeletal muscle.NEW & NOTEWORTHY We show that mitochondrial respiration is temporarily impaired after a period of intensified exercise training in elite athletes. In parallel, proteins involved in the antioxidative response including SOD2, UCP3, and ANT2 were upregulated, whereas mitochondrial biogenesis was slightly activated. Despite the mitochondrial respiratory impairments, physical performance was improved a few days after the intense training period.


Asunto(s)
Mitocondrias Musculares , Resistencia Física , Atletas , Humanos , Mitocondrias , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno
20.
Am J Clin Nutr ; 111(4): 749-756, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32091599

RESUMEN

BACKGROUND: A diet rich in fruits and vegetables is associated with lowering of blood pressure (BP), but the nutrient(s) responsible for these effects remain unclear. Research suggests that inorganic nitrate present in leafy green vegetables is converted into NO in vivo to improve cardiovascular function. OBJECTIVE: In this study, we evaluated the effect of leafy green vegetables on BP in subjects with elevated BP, with the aim of elucidating if any such effect is related to their high nitrate content. DESIGN: We enrolled 243 subjects, 50-70 y old, with a clinic systolic BP (SBP) of 130-159 mm Hg. After a 2-wk run-in period on a nitrate-restricted diet the subjects were randomly assigned to receive 1 of the following 3 interventions daily for 5 wk: low-nitrate vegetables + placebo pills, low-nitrate vegetables + nitrate pills (300 mg nitrate), or leafy green vegetables containing 300 mg nitrate + placebo pills. The primary end point measure was the difference in change in 24 h ambulatory SBP between the groups. RESULTS: A total of 231 subjects (95%) completed the study. The insignificant change in ambulatory SBP (mean ± standard deviation) was -0.6 ± 6.2 mm Hg in the placebo group, -1.2 ± 6.8 mm Hg in the potassium nitrate group, and -0.5 ± 6.6 mm Hg in the leafy green vegetable group. There was no significant difference in change between the 3 groups. CONCLUSIONS: A 5-wk dietary supplementation with leafy green vegetables or pills containing the same amount of inorganic nitrate does not decrease ambulatory SBP in subjects with elevated BP. This trial was registered at clinicaltrials.gov as NCT02916615.


Asunto(s)
Presión Sanguínea , Hipertensión/dietoterapia , Hipertensión/fisiopatología , Nitritos/metabolismo , Verduras/metabolismo , Anciano , Dieta , Femenino , Humanos , Hipertensión/metabolismo , Masculino , Persona de Mediana Edad , Nitritos/análisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Verduras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA