Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(20): 9579-9586, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37818868

RESUMEN

Insertion of metal layers between layered transition-metal dichalcogenides (TMDs) enables the design of new pseudo-2D nanomaterials. The general premise is that various metal atoms may adopt energetically favorable intercalation sites between two TMD sheets. These covalently bound metals arrange in metastable configurations and thus enable the controlled synthesis of nanomaterials in a bottom-up approach. Here, this method is demonstrated by the insertion of Cr or Mn between VSe2 layers. Vacuum-deposited transition metals diffuse between VSe2 layers with increasing concentration, arranging in ordered phases. The Cr3+ or Mn2+ ions are in octahedral coordination and thus in a high-spin state. Measured and computed magnetic moments are high for dilute Cr atoms, but with increasing Cr concentration the average magnetic moment decreases, suggesting antiferromagnetic ordering between Cr ions. The many possible combinations of transition metals with TMDs form a library for exploring quantum phenomena in these nanomaterials.

2.
Nano Lett ; 22(23): 9571-9577, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36399113

RESUMEN

Monolayer PtTe2 is a narrow gap semiconductor while Pt2Te2 is a metal. Here we show that the former can be transformed into the latter by reaction with vapor-deposited Pt atoms. The transformation occurs by nucleating the Pt2Te2 phase within PtTe2 islands, so that a metal-semiconductor junction is formed. A flat band structure is found with the Fermi level of the metal aligning with that of the intrinsically p-doped PtTe2. This is achieved by an interface dipole that accommodates the ∼0.2 eV shift in the work functions of the two materials. First-principles calculations indicate that the origin of the interface dipole is the atomic scale charge redistributions at the heterojunction. The demonstrated compositional phase transformation of a 2D semiconductor into a 2D metal is a promising approach for making in-plane metal contacts that are required for efficient charge injection and is of particular interest for semiconductors with large spin-orbit coupling, like PtTe2.

3.
ACS Nano ; 17(6): 5913-5920, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36926837

RESUMEN

The interlayer interaction in Pt-dichalcogenides strongly affects their electronic structures. The modulations of the interlayer atom-coordination in vertical heterostructures based on these materials are expected to laterally modify these interlayer interactions and thus provide an opportunity to texture the electronic structure. To determine the effects of local variation of the interlayer atom coordination on the electronic structure of PtSe2, van der Waals heterostructures of PtSe2 and PtTe2 have been synthesized by molecular beam epitaxy. The heterostructure forms a coincidence lattice with 13 unit cells of PtSe2 matching 12 unit cells of PtTe2, forming a moiré superstructure. The interaction with PtTe2 reduces the band gap of PtSe2 monolayers from 1.8 eV to 0.5 eV. While the band gap is uniform across the moiré unit cell, scanning tunneling spectroscopy and dI/dV mapping identify gap states that are localized within certain regions of the moiré unit cell. Deep states associated with chalcogen pz-orbitals at binding energies of ∼ -2 eV also exhibit lateral variation within the moiré unit cell, indicative of varying interlayer chalcogen interactions. Density functional theory calculations indicate that local variations in atom coordination in the moiré unit cell cause variations in the charge transfer from PtTe2 to PtSe2, thus affecting the value of the interface dipole. Experimentally this is confirmed by measuring the local work function by field emission resonance spectroscopy, which reveals a large work function modulation of ∼0.5 eV within the moiré structure. These results show that the local coordination variation of the chalcogen atoms in the PtSe2/PtTe2 van der Waals heterostructure induces a nanoscale electronic structure texture in PtSe2.

4.
ACS Nano ; 16(6): 9908-9919, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35652695

RESUMEN

The platinum-tellurium phase diagram exhibits various (meta)stable van der Waals (vdW) materials that can be constructed by stacking PtTe2 and Pt2Te2 layers. Monophase PtTe2, being the thermodynamically most stable compound, can readily be grown as thin films. Obtaining the other phases (Pt2Te3, Pt3Te4, Pt2Te2), especially in their ultimate thin form, is significantly more challenging. We show that PtTe2 thin films can be transformed by vacuum annealing-induced Te-loss into Pt3Te4- and Pt2Te2-bilayers. These transformations are characterized by scanning tunneling microscopy and X-ray and angle resolved photoemission spectroscopy. Once Pt3Te4 is formed, it is thermally stable up to 350°C. To transform Pt3Te4 into Pt2Te2, a higher annealing temperature of 400°C is required. The experiments combined with density functional theory calculations provide insights into these transformation mechanisms and show that a combination of the thermodynamic preference of Pt3Te4 over a phase segregation into PtTe2 and Pt2Te2 and an increase in the Te-vacancy formation energy for Pt3Te4 compared to the starting PtTe2 material is critical to stabilize the Pt3Te4 bilayer. To desorb more tellurium from Pt3Te4 and transform the material into Pt2Te2, a higher Te-vacancy formation energy has to be overcome by raising the temperature. Interestingly, bilayer Pt2Te2 can be retellurized by exposure to Te-vapor. This causes the selective transformation of the topmost Pt2Te2 layer into two layers of PtTe2, and consequently the synthesis of e Pt2Te3. Thus, all known Pt-telluride vdW compounds can be obtained in their ultrathin form by carefully controlling the stoichiometry of the material.

5.
ACS Nano ; 14(7): 8473-8484, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32584543

RESUMEN

Material growth by van der Waals epitaxy has the potential to isolate monolayer (ML) materials and synthesize ultrathin films not easily prepared by exfoliation or other growth methods. Here, the synthesis of the early transition metal (Ti, V, and Cr) tellurides by molecular beam epitaxy (MBE) in the mono- to few-layer regime is investigated. The layered ditellurides of these materials are known for their intriguing quantum- and layer dependent- properties. Here we show by a combination of in situ sample characterization and comparison with computational predictions that ML ditellurides with octahedral 1T structure are readily grown, but for multilayers, the transition metal dichalcogenide (TMDC) formation competes with self-intercalated compounds. CrTe2, a TMDC that is known to be metastable in bulk and easily decomposes into intercalation compounds, has been synthesized successfully in the ML regime at low growth temperatures. At elevated growth temperatures or for multilayers, only the intercalation compound, equivalent to a bulk Cr3Te4, could be obtained. ML VTe2 is more stable and can be synthesized at higher growth temperatures in the ML regime, but multilayers also convert to a bulk-equivalent V3Te4 compound. TiTe2 is the most stable of the TMDCs studied; nevertheless, a detailed analysis of multilayers also indicates the presence of intercalated metals. Computation suggests that the intercalation-induced distortion of the TMDC-layers is much reduced in Ti-telluride compared to V-, and Cr-telluride. This makes the identification of intercalated materials by scanning tunneling microscopy more challenging for Ti-telluride. The identification of self-intercalation compounds in MBE grown multilayer chalcogenides may explain observed lattice distortions in previously reported MBE grown early transition metal chalcogenides. On the other hand, these intercalation compounds in their ultrathin limit can be considered van der Waals materials in their own right. This class of materials is only accessible by direct growth methods but may be used as "building blocks" in MBE-grown van der Waals heterostructures. Controlling their growth is an important step for understanding and studying the properties of these materials.

6.
J Phys Chem Lett ; 10(17): 4987-4993, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31411022

RESUMEN

Interlayer interactions in layered transition metal dichalcogenides are known to be important for describing their electronic properties. Here, we demonstrate that the absence of interlayer coupling in monolayer VTe2 also causes their structural modification from a distorted 1T' structure in bulk and multilayer samples to a hexagonal 1T structure in the monolayer. X-ray photoemission spectroscopy indicates that this structural transition is associated with electron transfer from the vanadium d bands to the tellurium atoms for the monolayer. This charge transfer may reduce the in-plane d orbital hybridization and thus favor the undistorted 1T structure. Phonon-dispersion calculations show that, in contrast to the 1T' structure, the 1T structure exhibits imaginary phonon modes that lead to a charge density wave (CDW) instability, which is also observed by low-temperature scanning tunneling microscopy as a 4 × 4 periodic lattice distortion. Thus, this work demonstrates a novel CDW material, whose properties are tuned by interlayer interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA