Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Genom ; 4(7): 100602, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38944039

RESUMEN

The phenotypic impact of compound heterozygous (CH) variation has not been investigated at the population scale. We phased rare variants (MAF ∼0.001%) in the UK Biobank (UKBB) exome-sequencing data to characterize recessive effects in 175,587 individuals across 311 common diseases. A total of 6.5% of individuals carry putatively damaging CH variants, 90% of which are only identifiable upon phasing rare variants (MAF < 0.38%). We identify six recessive gene-trait associations (p < 1.68 × 10-7) after accounting for relatedness, polygenicity, nearby common variants, and rare variant burden. Of these, just one is discovered when considering homozygosity alone. Using longitudinal health records, we additionally identify and replicate a novel association between bi-allelic variation in ATP2C2 and an earlier age at onset of chronic obstructive pulmonary disease (COPD) (p < 3.58 × 10-8). Genetic phase contributes to disease risk for gene-trait pairs: ATP2C2-COPD (p = 0.000238), FLG-asthma (p = 0.00205), and USH2A-visual impairment (p = 0.0084). We demonstrate the power of phasing large-scale genetic cohorts to discover phenome-wide consequences of compound heterozygosity.


Asunto(s)
Bancos de Muestras Biológicas , Exoma , Heterocigoto , Fenotipo , Humanos , Reino Unido/epidemiología , Exoma/genética , Predisposición Genética a la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica/genética , Femenino , Masculino , Proteínas Filagrina , Estudio de Asociación del Genoma Completo , Asma/genética , Biobanco del Reino Unido
2.
Genome Biol ; 25(1): 111, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685090

RESUMEN

BACKGROUND: Untranslated regions (UTRs) are important mediators of post-transcriptional regulation. The length of UTRs and the composition of regulatory elements within them are known to vary substantially across genes, but little is known about the reasons for this variation in humans. Here, we set out to determine whether this variation, specifically in 5'UTRs, correlates with gene dosage sensitivity. RESULTS: We investigate 5'UTR length, the number of alternative transcription start sites, the potential for alternative splicing, the number and type of upstream open reading frames (uORFs) and the propensity of 5'UTRs to form secondary structures. We explore how these elements vary by gene tolerance to loss-of-function (LoF; using the LOEUF metric), and in genes where changes in dosage are known to cause disease. We show that LOEUF correlates with 5'UTR length and complexity. Genes that are most intolerant to LoF have longer 5'UTRs, greater TSS diversity, and more upstream regulatory elements than their LoF tolerant counterparts. We show that these differences are evident in disease gene-sets, but not in recessive developmental disorder genes where LoF of a single allele is tolerated. CONCLUSIONS: Our results confirm the importance of post-transcriptional regulation through 5'UTRs in tight regulation of mRNA and protein levels, particularly for genes where changes in dosage are deleterious and lead to disease. Finally, to support gene-based investigation we release a web-based browser tool, VuTR, that supports exploration of the composition of individual 5'UTRs and the impact of genetic variation within them.


Asunto(s)
Regiones no Traducidas 5' , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Humanos , Dosificación de Gen , Regulación de la Expresión Génica , Sitio de Iniciación de la Transcripción , Empalme Alternativo , Conformación de Ácido Nucleico
3.
Commun Biol ; 7(1): 87, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216744

RESUMEN

Population-based association studies have identified many genetic risk loci for coronary artery disease (CAD), but it is often unclear how genes within these loci are linked to CAD. Here, we perform interaction proteomics for 11 CAD-risk genes to map their protein-protein interactions (PPIs) in human vascular cells and elucidate their roles in CAD. The resulting PPI networks contain interactions that are outside of known biology in the vasculature and are enriched for genes involved in immunity-related and arterial-wall-specific mechanisms. Several PPI networks derived from smooth muscle cells are significantly enriched for genetic variants associated with CAD and related vascular phenotypes. Furthermore, the networks identify 61 genes that are found in genetic loci associated with risk of CAD, prioritizing them as the causal candidates within these loci. These findings indicate that the PPI networks we have generated are a rich resource for guiding future research into the molecular pathogenesis of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/genética , Mapas de Interacción de Proteínas , Redes Reguladoras de Genes , Sitios Genéticos , Proteómica
4.
Cell Rep ; 43(5): 114152, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38669140

RESUMEN

Activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome complex is an essential innate immune signaling mechanism. To reveal how human NLRP3 inflammasome assembly and activation are controlled, in particular by components of the ubiquitin system, proximity labeling, affinity purification, and RNAi screening approaches were performed. Our study provides an intricate time-resolved molecular map of different phases of NLRP3 inflammasome activation. Also, we show that ubiquitin C-terminal hydrolase 1 (UCH-L1) interacts with the NACHT domain of NLRP3. Downregulation of UCH-L1 decreases pro-interleukin-1ß (IL-1ß) levels. UCH-L1 chemical inhibition with small molecules interfered with NLRP3 puncta formation and ASC oligomerization, leading to altered IL-1ß cleavage and secretion, particularly in microglia cells, which exhibited elevated UCH-L1 expression as compared to monocytes/macrophages. Altogether, we profiled NLRP3 inflammasome activation dynamics and highlight UCH-L1 as an important modulator of NLRP3-mediated IL-1ß production, suggesting that a pharmacological inhibitor of UCH-L1 may decrease inflammation-associated pathologies.


Asunto(s)
Inflamasomas , Interleucina-1beta , Macrófagos , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Proteómica , Ubiquitina Tiolesterasa , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteómica/métodos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética
5.
medRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461573

RESUMEN

Exome-sequencing association studies have successfully linked rare protein-coding variation to risk of thousands of diseases. However, the relationship between rare deleterious compound heterozygous (CH) variation and their phenotypic impact has not been fully investigated. Here, we leverage advances in statistical phasing to accurately phase rare variants (MAF ~ 0.001%) in exome sequencing data from 175,587 UK Biobank (UKBB) participants, which we then systematically annotate to identify putatively deleterious CH coding variation. We show that 6.5% of individuals carry such damaging variants in the CH state, with 90% of variants occurring at MAF < 0.34%. Using a logistic mixed model framework, systematically accounting for relatedness, polygenic risk, nearby common variants, and rare variant burden, we investigate recessive effects in common complex diseases. We find six exome-wide significant (P<1.68×10-7) and 17 nominally significant (P<5.25×10-5) gene-trait associations. Among these, only four would have been identified without accounting for CH variation in the gene. We further incorporate age-at-diagnosis information from primary care electronic health records, to show that genetic phase influences lifetime risk of disease across 20 gene-trait combinations (FDR < 5%). Using a permutation approach, we find evidence for genetic phase contributing to disease susceptibility for a collection of gene-trait pairs, including FLG-asthma (P=0.00205) and USH2A-visual impairment (P=0.0084). Taken together, we demonstrate the utility of phasing large-scale genetic sequencing cohorts for robust identification of the phenome-wide consequences of compound heterozygosity.

6.
Nat Commun ; 12(1): 2580, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972534

RESUMEN

Combining genetic and cell-type-specific proteomic datasets can generate biological insights and therapeutic hypotheses, but a technical and statistical framework for such analyses is lacking. Here, we present an open-source computational tool called Genoppi (lagelab.org/genoppi) that enables robust, standardized, and intuitive integration of quantitative proteomic results with genetic data. We use Genoppi to analyze 16 cell-type-specific protein interaction datasets of four proteins (BCL2, TDP-43, MDM2, PTEN) involved in cancer and neurological disease. Through systematic quality control of the data and integration with published protein interactions, we show a general pattern of both cell-type-independent and cell-type-specific interactions across three cancer cell types and one human iPSC-derived neuronal cell type. Furthermore, through the integration of proteomic and genetic datasets in Genoppi, our results suggest that the neuron-specific interactions of these proteins are mediating their genetic involvement in neurodegenerative diseases. Importantly, our analyses suggest that human iPSC-derived neurons are a relevant model system for studying the involvement of BCL2 and TDP-43 in amyotrophic lateral sclerosis.


Asunto(s)
Biología Computacional/métodos , Estudio de Asociación del Genoma Completo/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neuronas/metabolismo , Programas Informáticos , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genómica , Humanos , Mutación , Polimorfismo de Nucleótido Simple , Unión Proteica , Proteómica , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA