Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567536

RESUMEN

The expanded CAG repeat number in HTT gene causes Huntington disease (HD), which is a severe, dominant neurodegenerative illness. The accurate determination of the expanded allele size is crucial to confirm the genetic status in symptomatic and presymptomatic at-risk subjects and avoid genetic polymorphism-related false-negative diagnoses. Precise CAG repeat number determination is critical to discriminate the cutoff between unexpanded and intermediate mutable alleles (IAs, 27-35 CAG) as well as between IAs and pathological, low-penetrance alleles (i.e., 36-39 CAG repeats), and it is also critical to detect large repeat expansions causing pediatric HD variants. We analyzed the HTT-CAG repeat number of 14 DNA reference materials and of a DNA collection of 43 additional samples carrying unexpanded, IAs, low and complete penetrance alleles, including large (>60 repeats) and very large (>100 repeats) expansions using a novel triplet-primed PCR-based assay, the AmplideX PCR/CE HTT Kit. The results demonstrate that the method accurately genotypes both normal and expanded HTT-CAG repeat numbers and reveals previously undisclosed and very large CAG expansions >200 repeats. We also show that this technique can improve genetic test reliability and accuracy by detecting CAG expansions in samples with sequence variations within or adjacent to the repeat tract that cause allele drop-outs or inaccuracies using other PCR methods.


Asunto(s)
Pruebas Genéticas/métodos , Proteína Huntingtina/genética , Enfermedad de Huntington/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Repeticiones de Trinucleótidos , Estudios de Cohortes , Humanos , Enfermedad de Huntington/genética
2.
Am J Med Genet A ; 179(7): 1148-1156, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31050164

RESUMEN

Instability of the FMR1 repeat, commonly observed in transmissions of premutation alleles (55-200 repeats), is influenced by the size of the repeat, its internal structure and the sex of the transmitting parent. We assessed these three factors in unstable transmissions of 14/3,335 normal (~5 to 44 repeats), 54/293 intermediate (45-54 repeats), and 1561/1,880 premutation alleles. While most unstable transmissions led to expansions, contractions to smaller repeats were observed in all size classes. For normal alleles, instability was more frequent in paternal transmissions and in alleles with long 3' uninterrupted repeat lengths. For premutation alleles, contractions also occurred more often in paternal than maternal transmissions and the frequency of paternal contractions increased linearly with repeat size. All paternal premutation allele contractions were transmitted as premutation alleles, but maternal premutation allele contractions were transmitted as premutation, intermediate, or normal alleles. The eight losses of AGG interruptions in the FMR1 repeat occurred exclusively in contractions of maternal premutation alleles. We propose a refined model of FMR1 repeat progression from normal to premutation size and suggest that most normal alleles without AGG interruptions are derived from contractions of maternal premutation alleles.


Asunto(s)
Alelos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Patrón de Herencia , Expansión de Repetición de Trinucleótido , Femenino , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/patología , Expresión Génica , Frecuencia de los Genes , Humanos , Masculino , Linaje
3.
Reprod Biol Endocrinol ; 15(1): 34, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28454580

RESUMEN

BACKGROUND: Premutation range CGGn repeats of the FMR1 gene denote risk toward primary ovarian insufficiency (POI), also called premature ovarian failure (POF). This prospective cohort study was undertaken to determine if X-chromosome inactivation skew (sXCI) is associated with variations in FMR1 CGG repeat length and, if so, is also associated with age adjusted antimüllerian hormone (AMH) levels as an indicator of functional ovarian reserve (FOR). METHODS: DNA samples of 58 women were analyzed for methylation status and confirmation of CGGn repeat length. Based on previously described FMR1 genotypes, there were 18 women with norm FMR1 (both alleles in range of CGG n=26-34), and 40 women who had at least one allele at CGGn<26 or CGG>34 ( not-norm FMR1). As part of a routine evaluation of ovarian reserve, patients at our fertility center have their serum AMH assessed at first visit. Regression models were used to test the association of ovarian reserve, as indicated by serum AMH, with sXCI. RESULTS: sXCI was significantly lower among infertility patients with norm FMR1 (6.5 ± 11.1, median and IQR) compared to those with not-norm FMR1 (12.0 ± 14.6, P = 0.005), though among young oocyte donors the opposite effect was observed. Women age >30 to 38 years old demonstrated greater ovarian reserve in the presence of lower sXCI as evidenced by significantly higher AMH levels (GLM sXCI_10%, f = 11.27; P = 0.004). CONCLUSIONS: Together these findings suggest that FMR1 CGG repeat length may have a role in determining X-chromosome inactivation which could represent a possible mechanism for previously observed association of low age adjusted ovarian reserve with FMR1 variations in repeat length. Further, larger, investigations will be required to test this hypothesis.


Asunto(s)
Hormona Antimülleriana/sangre , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Reserva Ovárica/genética , Insuficiencia Ovárica Primaria , Expansión de Repetición de Trinucleótido , Inactivación del Cromosoma X/genética , Adulto , Estudios de Casos y Controles , Femenino , Estudios de Asociación Genética , Humanos , Insuficiencia Ovárica Primaria/sangre , Insuficiencia Ovárica Primaria/genética , Expansión de Repetición de Trinucleótido/genética , Adulto Joven
4.
Genet Med ; 17(5): 358-64, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25210937

RESUMEN

PURPOSE: Fragile X CGG repeat alleles often contain one or more AGG interruptions that influence allele stability and risk of a full mutation transmission from parent to child. We have examined transmissions of maternal and paternal alleles with 45-90 repeats to quantify the effect of AGG interruptions on fragile X repeat instability. METHODS: A novel FMR1 polymerase chain reaction assay was used to determine CGG repeat length and AGG interruptions for 1,040 alleles from 705 families. RESULTS: We grouped transmissions into nine categories of five repeats by parental size and found that in every size category, alleles with no AGGs had the greatest risk for instability. For maternal alleles <75 repeats, 89% (24/27) that expanded to a full mutation had no AGGs. Two contractions in maternal transmission were accompanied by loss of AGGs, suggesting a mechanism for generating alleles that lack AGG interruptions. Maternal age was examined as a factor in full mutation expansions using prenatal samples to minimize ascertainment bias, and a possible effect was observed though it was not statistically significant (P = 0.06). CONCLUSION: These results strengthen the association of AGG repeats with CGG repeat stability and provide more accurate risk estimates of full mutation expansions for women with 45-90 repeat alleles.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Heterocigoto , Mutación , Expansión de Repetición de Trinucleótido , Factores de Edad , Alelos , Anticipación Genética , Familia , Femenino , Síndrome del Cromosoma X Frágil/diagnóstico , Pruebas Genéticas , Inestabilidad Genómica , Humanos , Masculino , Tamizaje Masivo , Mosaicismo , Reacción en Cadena de la Polimerasa
5.
J Med Genet ; 51(5): 309-18, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24591415

RESUMEN

BACKGROUND: Greater than 200 CGG repeats in the 5'UTR of the FMR1 gene lead to epigenetic silencing and lack of the FMR1 protein, causing fragile X Syndrome. Individual carriers of a premutation (PM) allele with 55-200 CGG repeats are typically unmethylated and can present with clinical features defined as FMR1-associated conditions. METHODS: Blood samples from 17 male PM carriers were assessed clinically and molecularly by Southern blot, western blot, PCR and QRT-PCR. Blood and brain tissue from an additional 18 PM males were also similarly examined. Continuous outcomes were modelled using linear regression and binary outcomes were modelled using logistic regression. RESULTS: Methylated alleles were detected in different fractions of blood cells in all PM cases (n=17). CGG repeat numbers correlated with percent of methylation and mRNA levels and, especially in the upper PM range, with greater number of clinical involvements. Inter-tissue/intra-tissue somatic instability and differences in percent methylation were observed between blood and fibroblasts (n=4) and also observed between blood and different brain regions in three of the 18 PM cases examined. CGG repeat lengths in lymphocytes remained unchanged over a period of time ranging from 2 to 6 years, three cases for whom multiple samples were available. CONCLUSIONS: In addition to CGG size instability, individuals with a PM expanded allele can exhibit methylation and display more clinical features likely due to RNA toxicity and/or FMR1 silencing. The observed association between CGG repeat length and percent of methylation with the severity of the clinical phenotypes underscores the potential value of methylation in affected PM to further understand penetrance, inform diagnosis and expand treatment options.


Asunto(s)
Alelos , Metilación de ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Mosaicismo , Adolescente , Anciano , Niño , Preescolar , Fibroblastos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/etiología , Síndrome del Cromosoma X Frágil/genética , Heterocigoto , Humanos , Masculino , Mutación , Expansión de Repetición de Trinucleótido , Adulto Joven
6.
BMC Pediatr ; 15: 77, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26174701

RESUMEN

BACKGROUND: Fragile X syndrome is the most common genetic disorder of intellectual developmental disorder/mental retardation (IDD/MR). The prevalence of FXS in a Chinese IDD children seeking diagnosis/treatment in mainland China is unknown. METHODS: Patients with unknown moderate to severe IDD were recruited from two children's hospitals. Informed consent was obtained from the children's parents. The size of the CGG repeat was identified using a commercial TP-PCR assay. The influence of AGG interruptions on the CGG expansion during maternal transmission was analyzed in 24 mother-son pairs (10 pairs with 1 AGG and 14 pairs with 2 AGGs). RESULTS: 553 unrelated patients between six months and eighteen years of age were recruited. Specimens from 540 patients (male:female = 5.2:1) produced high-quality TP-PCR data, resulting in the determination of the FMR1 CGG repeat number for each. The most common repeat numbers were 29 and 30, and the most frequent interruption pattern was 2 or 3 AGGs. Five full mutations were identified (1 familial and 4 sporadic IDD patients), and size mosaicism was apparent in 4 of these FXS patients (4/5 = 80%). The overall yield of FXS in the IDD cohort was 0.93% (5/540). Neither the mean size of CGG expansion (0.20 vs. 0.79, p > 0.05) nor the frequency of CGG expansion (2/10 vs. 9/14, p > 0.05) was significantly different between the 1 and 2 AGG groups following maternal transmission. CONCLUSIONS: The FMR1 TP-PCR assay generates reliable and sensitive results across a large number of patient specimens, and is suitable for clinical genetic diagnosis. Using this assay, the prevalence of FXS was 0.93% in Chinese children with unknown IDD.


Asunto(s)
Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/epidemiología , Adolescente , Niño , Preescolar , China/epidemiología , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Genotipo , Humanos , Lactante , Discapacidad Intelectual/etiología , Masculino , Linaje , Reacción en Cadena de la Polimerasa , Prevalencia
7.
Oncologist ; 19(4): 336-43, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24664487

RESUMEN

PURPOSE: The success of precision oncology relies on accurate and sensitive molecular profiling. The Ion AmpliSeq Cancer Panel, a targeted enrichment method for next-generation sequencing (NGS) using the Ion Torrent platform, provides a fast, easy, and cost-effective sequencing workflow for detecting genomic "hotspot" regions that are frequently mutated in human cancer genes. Most recently, the U.K. has launched the AmpliSeq sequencing test in its National Health Service. This study aimed to evaluate the clinical application of the AmpliSeq methodology. METHODS: We used 10 ng of genomic DNA from formalin-fixed, paraffin-embedded human colorectal cancer (CRC) tumor specimens to sequence 46 cancer genes using the AmpliSeq platform. In a validation study, we developed an orthogonal NGS-based resequencing approach (SimpliSeq) to assess the AmpliSeq variant calls. RESULTS: Validated mutational analyses revealed that AmpliSeq was effective in profiling gene mutations, and that the method correctly pinpointed "true-positive" gene mutations with variant frequency >5% and demonstrated high-level molecular heterogeneity in CRC. However, AmpliSeq enrichment and NGS also produced several recurrent "false-positive" calls in clinically druggable oncogenes such as PIK3CA. CONCLUSION: AmpliSeq provided highly sensitive and quantitative mutation detection for most of the genes on its cancer panel using limited DNA quantities from formalin-fixed, paraffin-embedded samples. For those genes with recurrent "false-positive" variant calls, caution should be used in data interpretation, and orthogonal verification of mutations is recommended for clinical decision making.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , ADN de Neoplasias/análisis , Genes Relacionados con las Neoplasias/genética , Secuencia de Bases , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I , Análisis Mutacional de ADN/métodos , Formaldehído , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación/genética , Parafina , Fosfatidilinositol 3-Quinasas/genética , Análisis de Secuencia de ADN , Adhesión del Tejido , Fijación del Tejido
8.
Arch Pathol Lab Med ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190268

RESUMEN

CONTEXT.­: Existing targeted cystic fibrosis screening assays miss important pathogenic CFTR variants in the ethnically diverse US population. OBJECTIVE.­: To evaluate the analytic performance of a multiplex polymerase chain reaction (PCR)/capillary electrophoresis (CE) CFTR assay panel that simultaneously interrogates primary pathogenic variants of different ethnic/ancestral groups. DESIGN.­: Performance characteristic assessment and variant coverage comparison of the panel with a focus on ethnicity-specific CFTR variants were performed. Sample DNA was primarily from whole blood or cell lines. Detection of CFTR carriers was compared across several commercially available CFTR kits and recommended variant sets based on panel content. RESULTS.­: The panel interrogated 65 pathogenic CFTR variants representing 92% coverage from a recent genomic sequencing survey of the US population, including 4 variants with top 5 frequency in African or Asian populations not reflected in other targeted panels. In simulation studies, the panel represented 95% of carriers across the global population, resulting in 6.9% to 19.0% higher carrier detection rate compared with 10 targeted panels or variant sets. Precision and sensitivity/specificity were 100% concordant. Multisite sample-level genotyping accuracy was 99.2%. Across PCR and CE instruments, sample-level genotyping accuracy was 97.1%, with greater than 99% agreement for all variant-level metrics. CONCLUSIONS.­: The CFTR assay achieves 92% or higher coverage of CFTR variants in diverse populations and provides improved pan-ethnic coverage of minority subgroups of the US populace. The assay can be completed within 5 hours from DNA sample to genotype, and performance data exceed acceptance criteria for analytic metrics. This assay panel content may help address gaps in ancestry-specific CFTR genotypes while providing a streamlined procedure with rapidly generated results.

9.
Am J Med Genet A ; 161A(4): 771-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23444167

RESUMEN

We investigated the effect of AGG interruptions on fragile X repeat instability upon transmission of fragile X intermediate and small premutation alleles with 45-69 CGG repeats. The FMR1 repeat structure was determined for 375 mothers, 48 fathers, and 538 offspring (457 maternal and 81 paternal transmissions) using a novel PCR assay to determine repeat length and AGG interruptions. The number of AGG interruptions and the length of uninterrupted CGG repeats at the 3' end were correlated with repeat instability on transmission. Maternal alleles with no AGGs conferred the greatest risk for unstable transmissions. All nine full mutation expansions were inherited from maternal alleles with no AGGs. Furthermore, the magnitude of repeat expansion was larger for alleles lacking AGG interruptions. Transmissions from paternal alleles with no AGGs also exhibited greater instability than those with one or more AGGs. Our results demonstrate that characterization of the AGG structure within the FMR1 repeat allows more accurate risk estimates of repeat instability and expansion to full mutations for intermediate and small premutation alleles.


Asunto(s)
Alelos , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Expansión de Repetición de Trinucleótido , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Inestabilidad Genómica , Humanos , Patrón de Herencia , Masculino , Mutación , Pronóstico , Riesgo
10.
Genet Med ; 13(6): 528-538, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21430544

RESUMEN

PURPOSE: Fragile X syndrome is associated with the expansion of CGG trinucleotide repeats and subsequent methylation of the FMR1 gene. Molecular diagnosis of fragile X currently requires Southern blot analysis to assess methylation. This study describes the evaluation of a polymerase chain reaction-only workflow for the determination of methylation status across a broad range of FMR1 genotypes in male and female specimens. METHODS: We evaluated a novel method that combines allele-specific methylation polymerase chain reaction and capillary electrophoresis with eight cell line and 80 clinical samples, including 39 full mutations. Methylation status was determined using a three-step workflow: (1) differential treatment of genomic DNA using a methylation-sensitive restriction enzyme; (2) polymerase chain reaction with two sets of dye-tagged primers; and (3) amplicon sizing by capillary electrophoresis. All samples were analyzed by both methylation polymerase chain reaction and Southern blot analysis. RESULTS: FMR1 methylation status and CGG repeat sizing were accurately and reproducibly determined in a set of methylation controls and genomic DNA samples representing a spectrum of CGG repeat lengths and methylation states. Moreover, methylation polymerase chain reaction revealed allele-specific methylation patterns in premutation alleles that were unobtainable using Southern blot analysis. CONCLUSIONS: Methylation polymerase chain reaction enabled high throughput, high resolution, and semiquantitative methylation assessments of FMR1 alleles, as well as determinations of CGG repeat length. Results for all samples were concordant with corresponding Southern blot analyses. As a result, this study presents a polymerase chain reaction-based method for comprehensive FMR1 analysis. In addition, the identification of novel methylation mosaic patterns revealed after polymerase chain reaction and capillary electrophoresis may be relevant to several FMR1 disorders.


Asunto(s)
Metilación de ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Southern Blotting , Línea Celular , Femenino , Síndrome del Cromosoma X Frágil/genética , Humanos , Masculino , Mutación
11.
J Mol Diagn ; 23(6): 753-764, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798739

RESUMEN

Spinal muscular atrophy is a severe autosomal recessive disease caused by disruptions in the SMN1 gene. The nearly identical SMN2 gene copy number is associated with disease severity. SMN1 duplication markers, such as c.∗3+80T>G and c.∗211_∗212del, can assess residual carrier risk. An SMN2 disease modifier (c.859G>C) can help inform prognostic outcomes. The emergence of multiple precision gene therapies for spinal muscular atrophy requires accurate and rapid detection of SMN1 and SMN2 copy numbers to enable early treatment and optimal patient outcomes. We developed and evaluated a single-tube PCR/capillary electrophoresis assay system that quantifies SMN1/2 copy numbers and genotypes three additional clinically relevant variants. Analytical validation was performed with human cell lines and whole blood representing varying SMN1/2 copies on four capillary electrophoresis instrument models. In addition, four independent laboratories used the assay to test 468 residual clinical genomic DNA samples. The results were ≥98.3% concordant with consensus SMN1/2 exon 7 copy numbers, determined using multiplex ligation-dependent probe amplification and droplet digital PCR, and were 100% concordant with Sanger sequencing for the three variants. Furthermore, copy number values were 98.6% (SMN1) and 97.1% (SMN2) concordant to each laboratory's own reference results.


Asunto(s)
Variaciones en el Número de Copia de ADN , Duplicación de Gen , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Proteína 2 para la Supervivencia de la Neurona Motora/genética
13.
RNA ; 14(5): 844-52, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18375788

RESUMEN

Proper normalization is a critical but often an underappreciated aspect of quantitative gene expression analysis. This study describes the identification and characterization of appropriate reference RNA targets for the normalization of microRNA (miRNA) quantitative RT-PCR data. miRNA microarray data from dozens of normal and disease human tissues revealed ubiquitous and stably expressed normalization candidates for evaluation by qRT-PCR. miR-191 and miR-103, among others, were found to be highly consistent in their expression across 13 normal tissues and five pair of distinct tumor/normal adjacent tissues. These miRNAs were statistically superior to the most commonly used reference RNAs used in miRNA qRT-PCR experiments, such as 5S rRNA, U6 snRNA, or total RNA. The most stable normalizers were also highly conserved across flash-frozen and formalin-fixed paraffin-embedded lung cancer tumor/NAT sample sets, resulting in the confirmation of one well-documented oncomir (let-7a), as well as the identification of novel oncomirs. These findings constitute the first report describing the rigorous normalization of miRNA qRT-PCR data and have important implications for proper experimental design and accurate data interpretation.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Estudios de Casos y Controles , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Valores de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Distribución Tisular
14.
Clin Chem ; 56(3): 399-408, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20056738

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is a trinucleotide-repeat disease caused by the expansion of CGG sequences in the 5' untranslated region of the FMR1 (fragile X mental retardation 1) gene. Molecular diagnoses of FXS and other emerging FMR1 disorders typically rely on 2 tests, PCR and Southern blotting; however, performance or throughput limitations of these methods currently constrain routine testing. METHODS: We evaluated a novel FMR1 gene-specific PCR technology with DNA templates from 20 cell lines and 146 blinded clinical samples. The CGG repeat number was determined by fragment sizing of PCR amplicons with capillary electrophoresis, and results were compared with those for FMR1 Southern blotting analyses with the same samples. RESULTS: The FMR1 PCR accurately detected full-mutation alleles up to at least 1300 CGG repeats and consisting of >99% GC character. All categories of alleles detected by Southern blotting, including 66 samples with full mutations, were also identified by the FMR1 PCR for each of the 146 clinical samples. Because all full mutation alleles in samples from heterozygous females were detected by the PCR, allele zygosity was reconciled in every case. The PCR reagents also detected a 1% mass fraction of a 940-CGG allele in a background of 99% 23-CGG allele-a roughly 5- fold greater sensitivity than obtained with Southern blotting. CONCLUSIONS: The novel PCR technology can accurately categorize the spectrum of FMR1 alleles, including alleles previously considered too large to amplify; reproducibly detect low abundance full mutation alleles; and correctly infer homozygosity in female samples, thus greatly reducing the need for sample reflexing to Southern blotting.


Asunto(s)
Alelos , Síndrome del Cromosoma X Frágil/genética , Mutación , Reacción en Cadena de la Polimerasa/métodos , Femenino , Síndrome del Cromosoma X Frágil/diagnóstico , Homocigoto , Humanos , Sensibilidad y Especificidad
15.
J Mol Diagn ; 22(3): 346-354, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31866572

RESUMEN

Newborn screening is designed for presymptomatic identification of serious conditions with effective early interventions. Clinical laboratories must perform prospective pilot studies to ensure that the analytical performance and workflow for a given screening test are appropriate. We assessed the potential to screen newborns for fragile X syndrome, a monogenic neurodevelopmental disorder, by establishing a customized, high-throughput PCR and analysis software system designed to detect fragile X mental retardation 1 gene repeat expansions from dried blood spots (DBSs). Assay precision, accuracy, sensitivity, and specificity were characterized across the categorical range of repeat expansions. The assay consistently resolved genotypes within three CGG repeats of reference values up to at least 137 repeats and within six repeats for larger expansions up to 200 repeats. Accuracy testing results were concordant with reference results. Full and premutation alleles were detected from subnanogram DNA inputs eluted from DBSs and from mixtures with down to 1% relative abundance of the respective expansion. Analysis of 963 deidentified newborn DBS samples identified 957 normal and 6 premutation specimens, consistent with previously published prevalence estimates. These studies demonstrate that the assay system can support high-throughput newborn screening programs.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Pruebas Genéticas , Tamizaje Neonatal , Reacción en Cadena de la Polimerasa , Alelos , Femenino , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Masculino , Mosaicismo , Mutación , Tamizaje Neonatal/métodos , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/normas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Expansión de Repetición de Trinucleótido
16.
Brain Sci ; 10(10)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008014

RESUMEN

Fragile X syndrome (FXS) is caused by silencing of the FMR1 gene, which encodes a protein with a critical role in synaptic plasticity. The molecular abnormality underlying FMR1 silencing, CGG repeat expansion, is well characterized; however, delineation of the pathway from DNA to RNA to protein using biosamples from well characterized patients with FXS is limited. Since FXS is a common and prototypical genetic disorder associated with intellectual disability (ID) and autism spectrum disorder (ASD), a comprehensive assessment of the FMR1 DNA-RNA-protein pathway and its correlations with the neurobehavioral phenotype is a priority. We applied nine sensitive and quantitative assays evaluating FMR1 DNA, RNA, and FMRP parameters to a reference set of cell lines representing the range of FMR1 expansions. We then used the most informative of these assays on blood and buccal specimens from cohorts of patients with different FMR1 expansions, with emphasis on those with FXS (N = 42 total, N = 31 with FMRP measurements). The group with FMRP data was also evaluated comprehensively in terms of its neurobehavioral profile, which allowed molecular-neurobehavioral correlations. FMR1 CGG repeat expansions, methylation levels, and FMRP levels, in both cell lines and blood samples, were consistent with findings of previous FMR1 genomic and protein studies. They also demonstrated a high level of agreement between blood and buccal specimens. These assays further corroborated previous reports of the relatively high prevalence of methylation mosaicism (slightly over 50% of the samples). Molecular-neurobehavioral correlations confirmed the inverse relationship between overall severity of the FXS phenotype and decrease in FMRP levels (N = 26 males, mean 4.2 ± 3.3 pg FMRP/ng genomic DNA). Other intriguing findings included a significant relationship between the diagnosis of FXS with ASD and two-fold lower levels of FMRP (mean 2.8 ± 1.3 pg FMRP/ng genomic DNA, p = 0.04), in particular observed in younger age- and IQ-adjusted males (mean age 6.9 ± 0.9 years with mean 3.2 ± 1.2 pg FMRP/ng genomic DNA, 57% with severe ASD), compared to FXS without ASD. Those with severe ID had even lower FMRP levels independent of ASD status in the male-only subset. The results underscore the link between FMR1 expansion, gene methylation, and FMRP deficit. The association between FMRP deficiency and overall severity of the neurobehavioral phenotype invites follow up studies in larger patient cohorts. They would be valuable to confirm and potentially extend our initial findings of the relationship between ASD and other neurobehavioral features and the magnitude of FMRP deficit. Molecular profiling of individuals with FXS may have important implications in research and clinical practice.

17.
Artículo en Inglés | MEDLINE | ID: mdl-30430876

RESUMEN

OBJECTIVE: Expansion of the G4C2 repeat tract in the C9orf72 gene is linked to frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we provide comprehensive genotyping of the C9orf72 repeat region for the National Institute of Neurological Disorders and Stroke (NINDS) ALS collection (n = 2095), using a novel bimodal PCR assay capable of amplifying nearly 100% GC-rich sequences. METHODS: A single-tube 3-primer PCR assay mode, resolved using capillary electrophoresis, was used for sizing up to 145 repeats with single-repeat accuracy, for detecting expansions irrespective of their overall size, and for flagging confounding 3' sequence variations (SVs). A modified two-primer PCR mode, resolved via agarose gel electrophoresis, provided further size information for hyper-expanded samples (>145 repeats) up to ∼5.8 kb amplicons (∼950 G4C2 repeats). RESULTS: Within the evaluated cohort, 177 (8.4%) samples were expanded, with 175 (99%) samples being hyper-expanded. 3'-SVs were identified in 64 (3.1%) samples, and were most common in expanded alleles. Genotypes of all 606 (29%) homozygous samples were confirmed using an orthogonal PCR assay. CONCLUSION: This study and PCR method may improve and standardize molecular characterization of the C9orf72 locus, and have the potential to inform phenotype-genotype correlations and therapeutic development in ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Técnicas de Genotipaje/métodos , Reacción en Cadena de la Polimerasa/métodos , Humanos
18.
Transl Oncol ; 12(6): 836-845, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30981944

RESUMEN

We developed and characterized a next-generation sequencing (NGS) technology for streamlined analysis of DNA and RNA using low-input, low-quality cancer specimens. A single-workflow, targeted NGS panel for non-small cell lung cancer (NSCLC) was designed covering 135 RNA and 55 DNA disease-relevant targets. This multiomic panel was used to assess 219 formalin-fixed paraffin-embedded NSCLC surgical resections and core needle biopsies. Mutations and expression phenotypes were identified consistent with previous large-scale genomic studies, including mutually exclusive DNA and RNA oncogenic driver events. Evaluation of a second cohort of low cell count fine-needle aspirate smears from the BATTLE-2 trial yielded 97% agreement with an independent, validated NGS panel that was used with matched surgical specimens. Collectively, our data indicate that broad, clinically actionable insights that previously required independent assays, workflows, and analyses to assess both DNA and RNA can be conjoined in a first-tier, highly multiplexed NGS test, thereby providing faster, simpler, and more economical results.

19.
J Mol Diagn ; 21(2): 352-365, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30529127

RESUMEN

Lung cancer accounts for approximately 14% of all newly diagnosed cancers and is the leading cause of cancer-related deaths. Chimeric RNA resulting from gene fusions (RNA fusions) and other RNA splicing errors are driver events and clinically addressable targets for non-small cell lung cancer (NSCLC). The reliable assessment of these RNA markers by next-generation sequencing requires integrated reagents, protocols, and interpretive software that can harmonize procedures and ensure consistent results across laboratories. We describe the development and verification of a system for targeted RNA sequencing for the analysis of challenging, low-input solid tumor biopsies that includes reagents for nucleic acid quantification and library preparation, run controls, and companion bioinformatics software. Assay development reconciled sequence discrepancies in public databases, created predictive formalin-fixed, paraffin-embedded RNA qualification metrics, and eliminated read misidentification attributable to index hopping events on the next-generation sequencing flow cell. The optimized and standardized system was analytically verified internally and in a multiphase study conducted at five independent laboratories. The results show accurate, reproducible, and sensitive detection of RNA fusions, alternative splicing events, and other expression markers of NSCLC. This comprehensive approach, combining sample quantification, quality control, library preparation, and interpretive bioinformatics software, may accelerate the routine implementation of targeted RNA sequencing of formalin-fixed, paraffin-embedded samples relevant to NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Exones/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Pulmonares/genética , Línea Celular Tumoral , Biología Computacional , Humanos
20.
Prostate ; 68(14): 1517-30, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18668517

RESUMEN

BACKGROUND: Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. METHODS: We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. RESULTS: Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. CONCLUSIONS: We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.


Asunto(s)
Adenocarcinoma/genética , Antígenos de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Miembro 25 de Receptores de Factores de Necrosis Tumoral/biosíntesis , Adenocarcinoma/patología , Animales , Antígenos de Neoplasias/biosíntesis , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Proteínas del Grupo de Alta Movilidad/biosíntesis , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias de la Próstata/patología , ARN Neoplásico/química , ARN Neoplásico/genética , Miembro 25 de Receptores de Factores de Necrosis Tumoral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXC , Transactivadores/biosíntesis , Transactivadores/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA