Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383904

RESUMEN

Crop mixtures are often beneficial in crop rotations to enhance resource utilization and yield stability. While targeted management, dependent on the local species composition, has the potential to increase the crop value, it comes at a higher expense in terms of field surveys. As fine-grained species distribution mapping of within-field variation is typically unfeasible, the potential of targeted management remains an open research area. In this work, we propose a new method for determining the biomass species composition from high resolution color images using a DeepLabv3+ based convolutional neural network. Data collection has been performed at four separate experimental plot trial sites over three growing seasons. The method is thoroughly evaluated by predicting the biomass composition of different grass clover mixtures using only an image of the canopy. With a relative biomass clover content prediction of R2 = 0.91, we present new state-of-the-art results across the largely varying sites. Combining the algorithm with an all terrain vehicle (ATV)-mounted image acquisition system, we demonstrate a feasible method for robust coverage and species distribution mapping of 225 ha of mixed crops at a median capacity of 17 ha per hour at 173 images per hectare.

2.
Sensors (Basel) ; 17(12)2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29168783

RESUMEN

A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35-0.58 m are correlated to the applied nitrogen treatments of 0-300 kg N ha . The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.

3.
Sensors (Basel) ; 17(11)2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29120383

RESUMEN

In this paper, we present a multi-modal dataset for obstacle detection in agriculture. The dataset comprises approximately 2 h of raw sensor data from a tractor-mounted sensor system in a grass mowing scenario in Denmark, October 2016. Sensing modalities include stereo camera, thermal camera, web camera, 360 ∘ camera, LiDAR and radar, while precise localization is available from fused IMU and GNSS. Both static and moving obstacles are present, including humans, mannequin dolls, rocks, barrels, buildings, vehicles and vegetation. All obstacles have ground truth object labels and geographic coordinates.

4.
Sensors (Basel) ; 16(11)2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27827908

RESUMEN

The stricter legislation within the European Union for the regulation of herbicides that are prone to leaching causes a greater economic burden on the agricultural industry through taxation. Owing to the increased economic burden, research in reducing herbicide usage has been prompted. High-resolution images from digital cameras support the studying of plant characteristics. These images can also be utilized to analyze shape and texture characteristics for weed identification. Instead of detecting weed patches, weed density can be estimated at a sub-patch level, through which even the identification of a single plant is possible. The aim of this study is to adapt the monocot and dicot coverage ratio vision (MoDiCoVi) algorithm to estimate dicotyledon leaf cover, perform grid spraying in real time, and present initial results in terms of potential herbicide savings in maize. The authors designed and executed an automated, large-scale field trial supported by the Armadillo autonomous tool carrier robot. The field trial consisted of 299 maize plots. Half of the plots (parcels) were planned with additional seeded weeds; the other half were planned with naturally occurring weeds. The in-situ evaluation showed that, compared to conventional broadcast spraying, the proposed method can reduce herbicide usage by 65% without measurable loss in biological effect.


Asunto(s)
Herbicidas/análisis , Agricultura , Algoritmos , Productos Agrícolas/química , Hojas de la Planta/química , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA