Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(19): 12164-12172, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32882126

RESUMEN

Apart from being considered a potential threat to ecosystems and human health, the ubiquity of microplastics presents analytical challenges. There is a high risk of sample contamination during sampling, sample preparation, and analysis. In this study, the potential of sample contamination or misinterpretation due to substances associated with disposable laboratory gloves or reagents used during sample preparation was investigated. Leachates of 10 different types of disposable gloves were analyzed using Raman microspectroscopy (µ-Raman), Fourier-transform infrared microspectroscopy (µ-FTIR), and pyrolysis-gas chromatography/mass spectrometry (pyr-GC/MS). There appeared to be polyethylene (PE) in almost all investigated glove leachates and with all applied methods. Closer investigations revealed that the leachates contained long-chain compounds such as stearates or fatty acids, which were falsely identified as PE by the applied analytical methods. Sodium dodecyl sulfate, which is commonly applied in microplastic research during sample preparation, may also be mistaken for PE. Therefore, µ-Raman, µ-FTIR, and pyr-GC/MS were further tested for their capability to distinguish among PE, sodium dodecyl sulfate, and stearates. It became clear that stearates and sodium dodecyl sulfates can cause substantial overestimation of PE.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Humanos , Intención , Plásticos , Contaminantes Químicos del Agua/análisis
2.
Anal Bioanal Chem ; 411(26): 6959-6968, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31471683

RESUMEN

The quantification of microplastics (MP) in environmental samples is currently a challenging task. To enable low quantification limits, an analytical method has been developed combining pressurized liquid extraction (PLE) and pyrolysis GC-MS. The automated extraction includes a pre-extraction step via methanol followed by a subsequent PLE using tetrahydrofuran. For the most frequently used synthetic polymers polyethylene (PE), polypropylene (PP), and polystyrene (PS), limits of quantification were achieved down to 0.007 mg/g. Recoveries above 80% were attained for solid matrices such as soil and sediments. The developed method was applied for MP quantification in environmental samples such as sediment, suspended matter, soil, and sewage sludge. In all these matrices, PE and PP were detected with concentrations ranging from 0.03 to 3.3 mg/g. In sewage sludge samples, all three polymers were present with concentration levels ranging between 0.08 ± 0.02 mg/g (PP) and 3.3 ± 0.3 mg/g (PE). However, especially for solid samples, the analysis of triplicates revealed elevated statistical uncertainties due to the inhomogeneous distribution of MP particles. Thus, care has to be taken when milling and homogenizing the samples due to the formation of agglomerates. Graphical abstract.

3.
Chemosphere ; 338: 139479, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37442386

RESUMEN

Suspended particulate matter (SPM) plays a major role in nutrient cycles and for the transport of pollutants within local and transboundary water catchments. Obtaining representative SPM samples from rivers, lakes, inland and coastal waters is crucial for quantitative and qualitative chemical analyses to correctly describe the chemical status of a water body. However, a representative sampling of SPM over time is challenging due to the heterogeneity of SPM particles sizes, their non-uniform distribution in rivers, and a variety of sampling devices being in use. Therefore, we investigated the efficiencies of five different sampling devices commonly used in national and international monitoring programs to collect representative SPM samples. We tested three passive sedimentation-based samplers (SBSs: sedimentation box, SB; sedimentation tank, ST; Raetz Sampler, RS), and two active separation techniques (continuous flow centrifuge, CFC; vacuum filtration, VF) in an experimental laboratory setup using in-house SPM standard suspensions (mineral, organic, and microplastic particles) with defined particle sizes. The mass-based efficiencies of the three examined SBSs were 0-66% for the mineral and organic particles <75 µm, where the mean particle sizes of collected samples were always shifted to bigger sizes compared to the initial suspensions. The efficiencies of the three SBSs to collect microplastic particles <80 µm were <20% due to the lower densities of microplastic compared to organic and mineral particles. In contrast to the SBSs, VF and CFC units showed excellent efficiencies >86% for all tested materials, with similar particle size distributions of the sampled material compared to those of the inlet suspensions. In conclusion, SPM sampling efficiencies of sampling units have to be carefully considered and compared to the respective aims of the monitoring approaches, especially when statements are derived from quantitative results on SPM.


Asunto(s)
Material Particulado , Contaminantes Químicos del Agua , Material Particulado/análisis , Microplásticos , Plásticos , Suspensiones , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Ríos , Agua/análisis
4.
Aquat Toxicol ; 231: 105723, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33385845

RESUMEN

Microplastics (MPs) as complex synthetic pollutants represent a growing concern for the aquatic environment. Previous studies examined the toxicity of MPs, but infrequently used a natural particle control such as kaolin. The cause of toxicity, either the physical structure of the particles or chemical components originating from the MPs, has rarely been resolved. Moreover, the ecotoxicological assessment of biodegradable plastics has received little attention. To narrow down the main driver for toxicity of irregular biodegradable MPs, we conducted a series of 28-days sediment toxicity tests with the freshwater oligochaete Lumbriculus variegatus and recorded the number of worms and dry weight as endpoints. Therefore, MPs containing several biodegradable polymers were either mixed with the sediment or layered on the sediment surface with concentrations from 1 to 8.4% sediment dw-1. Kaolin particles were evaluated in parallel as particle control. Furthermore, aqueous leachates and methanolic extracts as MP equivalents as well as solvent-treated, presumably pure MPs were investigated after mixing them into the sediment. Our results reveal that MP mixed with the sediment induced stronger adverse effects than layered MP. Kaolin particles caused no adverse effects. In contrast, they enhanced dry weight in both applications. The impact of aqueous leachates was comparable to the control without MPs, whereas methanolic extracts affected the worm number at the highest concentration with 100% mortality. Solvent-treated, presumably pure MP resulted in mostly higher worm numbers when compared to untreated MPs mixed into the sediment. This study demonstrates that MPs mixed into the sediment affect L. variegatus more than MPs that are layered on the sediment surface. Kaolin as a natural, fine-sized particle control created somewhat favorable conditions for the worm. The main driver for toxicity, however, proved to be chemicals associated with the plastic product and its previous content.


Asunto(s)
Agua Dulce/química , Microplásticos/toxicidad , Oligoquetos/efectos de los fármacos , Pruebas de Toxicidad , Animales , Biodegradación Ambiental , Sedimentos Geológicos/química , Tamaño de la Partícula , Solventes/química , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA