Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Psychol Med ; 53(12): 5538-5550, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36065905

RESUMEN

BACKGROUND: Alcohol binge drinking may compromise the functioning of the nucleus accumbens (NAc), i.e. the neural hub for processing reward and aversive responses. METHODS: As socially stressful events pose particular challenges at developmental stages, this research applied the resident-intruder paradigm as a model of social stress, to highlight behavioural neuroendocrine and molecular maladaptive plasticity in rats at withdrawal from binge-like alcohol exposure in adolescence. In search of a rescue agent, cannabidiol (CBD) was selected due to its favourable effects on alcohol- and stress-related harms. RESULTS: Binge-like alcohol exposed intruder rats displayed a compromised defensive behaviour against the resident and a blunted response of the stress system, in addition to indexes of abnormal dopamine (DA)/glutamate plasticity and dysfunctional spine dynamics in the NAc. CBD administration (60 mg/kg) was able to: (1) increase social exploration in the binge-like alcohol exposed intruder rats, at the expenses of freezing time, and in control rats, which received less aggressive attacks from the resident; (2) reduce corticosterone levels independently on alcohol previous exposure; (3) restore DA transmission and (4) facilitate excitatory postsynaptic strength and remodelling. CONCLUSIONS: Overall, the maladaptive behavioural and synaptic plasticity promoted by the intersection between binge-like alcohol withdrawal and exposure to adverse social stress can be rescued by a CBD détente effect that results in a successful defensive strategy, supported by a functional endocrine and synaptic plasticity. The current data highlight CBD's relevant therapeutic potential in alcohol- and stress-related harms, and prompt further investigation on its molecular targets.


Asunto(s)
Alcoholismo , Cannabidiol , Síndrome de Abstinencia a Sustancias , Ratas , Humanos , Animales , Cannabidiol/farmacología , Dopamina , Núcleo Accumbens , Etanol/farmacología
2.
Phytother Res ; 37(11): 4870-4884, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37525534

RESUMEN

Alcohol binge drinking is common among adolescents and may challenge the signalling systems that process affective stimuli, including calcitonin gene-related peptide (CGRP) signalling. Here, we employed a rat model of adolescent binge drinking to evaluate reward-, social- and aversion-related behaviour, glucocorticoid output and CGRP levels in affect-related brain regions. As a potential rescue, the effect of the phytocannabinoid cannabidiol was explored. Adolescent male rats underwent the intermittent 20% alcohol two-bottle choice paradigm; at the binge day (BD) and the 24 h withdrawal day (WD), we assessed CGRP expression in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), amygdala, hypothalamus and brainstem; in addition, we evaluated sucrose preference, social motivation and drive, nociceptive response, and serum corticosterone levels. Cannabidiol (40 mg/kg, i.p.) was administered before each drinking session, and its effect was measured on the above-mentioned readouts. At BD and WD, rats displayed decreased CGRP expression in mPFC, NAc and amygdala; increased CGRP levels in the brainstem; increased response to rewarding- and nociceptive stimuli and decreased social drive; reduced serum corticosterone levels. Cannabidiol reduced alcohol consumption and preference; normalised the abnormal corticolimbic CGRP expression, and the reward and aversion-related hyper-responsivity, as well as glucocorticoid levels in alcohol binge-like drinking rats. Overall, CGRP can represent both a mediator and a target of alcohol binge-like drinking and provides a further piece in the intricate puzzle of alcohol-induced behavioural and neuroendocrine sequelae. CBD shows promising effects in limiting adolescent alcohol binge drinking and rebalancing the bio-behavioural abnormalities.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Cannabidiol , Ratas , Masculino , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Cannabidiol/farmacología , Consumo Excesivo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Consumo Excesivo de Bebidas Alcohólicas/psicología , Corticosterona , Glucocorticoides , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/psicología , Etanol , Hipotálamo
3.
Pharmacol Res ; 141: 384-391, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30648615

RESUMEN

The dopamine D3 receptor (D3R), in the nucleus accumbens (NAc), plays an important role in alcohol reward mechanisms. The major neuronal type within the NAc is the GABAergic medium spiny neuron (MSN), whose activity is regulated by dopaminergic inputs. We previously reported that genetic deletion or pharmacological blockade of D3R increases GABAA α6 subunit in the ventral striatum. Here we tested the hypothesis that D3R-dependent changes in GABAA α6 subunit in the NAc affect voluntary alcohol intake, by influencing the inhibitory transmission of MSNs. We performed in vivo and ex vivo experiments in D3R knockout (D3R -/-) mice and wild type littermates (D3R +/+). Ro 15-4513, a high affinity α6-GABAA ligand was used to study α6 activity. At baseline, NAc α6 expression was negligible in D3R+/+, whereas it was robust in D3R-/-; other relevant GABAA subunits were not changed. In situ hybridization and qPCR confirmed α6 subunit mRNA expression especially in the NAc. In the drinking-in-the-dark paradigm, systemic administration of Ro 15-4513 inhibited alcohol intake in D3R+/+, but increased it in D3R-/-; this was confirmed by intra-NAc administration of Ro 15-4513 and furosemide, a selective α6-GABAA antagonist. Whole-cell patch-clamp showed peak amplitudes of miniature inhibitory postsynaptic currents in NAc medium spiny neurons higher in D3R-/- compared to D3R+/+; Ro 15-4513 reduced the peak amplitude in the NAc of D3R-/-, but not in D3R+/+. We conclude that D3R-dependent enhanced expression of α6 GABAA subunit inhibits voluntary alcohol intake by increasing GABA inhibition in the NAc.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/genética , Neuronas GABAérgicas/patología , Receptores de Dopamina D3/genética , Receptores de GABA-A/genética , Animales , Consumo Excesivo de Bebidas Alcohólicas/patología , Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Subunidades de Proteína/genética , ARN Mensajero/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-29770478

RESUMEN

Increasing evidence has focusesed on the endocannabinoid system as a relevant player in the induction of aberrant synaptic plasticity and related addictive phenotype following chronic excessive alcohol drinking. In addition, the endocannabinoid system is implicated in the pathogenesis of alcoholic liver disease. Interestingly, whereas the involvement of CB1 receptors in alcohol rewarding properties is established, the central and peripheral action of CB2 signalling is still to be elucidated. This review aims at giving the input to deepen knowledge on the role of the endocannabinoid system, highlighting the advancing evidence that suggests that CB1 and CB2 receptors may play opposite roles in the regulation of both the reinforcing properties of alcohol in the brain and the mechanisms responsible for cell injury and inflammation in the hepatic tissue. The manipulation of the endocannabinoid system could represent a bi-faceted strategy to counteract alcohol-related dysfunction in central transmission and liver structural and functional disarrangement.

5.
Nat Commun ; 15(1): 6842, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122700

RESUMEN

Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.


Asunto(s)
Astrocitos , Cognición , Glucólisis , Ácido Láctico , Ratones Noqueados , Serina , Animales , Masculino , Astrocitos/metabolismo , Cognición/fisiología , Ratones , Ácido Láctico/metabolismo , Serina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Hipocampo/metabolismo , Sinapsis/metabolismo , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
6.
Front Pharmacol ; 14: 1237485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583903

RESUMEN

Introduction: An altered neurodevelopmental trajectory associated with prenatal exposure to ∆-9-tetrahydrocannabinol (THC) leads to aberrant cognitive processing through a perturbation in the effectors of hippocampal plasticity in the juvenile offspring. As adolescence presents a unique window of opportunity for "brain reprogramming", we aimed at assessing the role of the non-psychoactive phytocannabinoid cannabidiol (CBD) as a rescue strategy to temper prenatal THC-induced harm. Methods: To this aim, Wistar rats prenatally exposed to THC (2 mg/kg s.c.) or vehicle (gestational days 5-20) were tested for specific indexes of spatial and configural memory in the reinforcement-motivated Can test and in the aversion-driven Barnes maze test during adolescence. Markers of hippocampal excitatory plasticity and endocannabinoid signaling-NMDAR subunits NR1 and 2A-, mGluR5-, and their respective scaffold proteins PSD95- and Homer 1-; CB1R- and the neuromodulatory protein HINT1 mRNA levels were evaluated. CBD (40 mg/kg i.p.) was administered to the adolescent offspring before the cognitive tasks. Results: The present results show that prenatal THC impairs hippocampal memory functions and the underlying synaptic plasticity; CBD is able to mitigate cognitive impairment in both reinforcement- and aversion-related tasks and the neuroadaptation of hippocampal excitatory synapses and CB1R-related signaling. Discussion: While this research shows CBD potential in dampening prenatal THC-induced consequences, we point out the urgency to curb cannabis use during pregnancy in order to avoid detrimental bio-behavioral outcomes in the offspring.

7.
Pharmaceutics ; 15(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36840014

RESUMEN

Previous evidence suggests that prenatal exposure to THC (pTHC) derails the neurodevelopmental trajectories towards a vulnerable phenotype for impaired emotional regulation and limbic memory. Here we aimed to investigate pTHC effect on hippocampus-related cognitive functions and markers of neuroplasticity in adolescent male offspring. Wistar rats were exposed to THC (2 mg/kg) from gestational day 5 to 20 and tested for spatial memory, object recognition memory and reversal learning in the reinforce-motivated Can test and in the aversion-driven Barnes maze test; locomotor activity and exploration, anxiety-like behaviour, and response to natural reward were assessed in the open field, elevated plus maze, and sucrose preference tests, respectively. The gene expression levels of NMDA NR1-2A subunits, mGluR5, and their respective scaffold proteins PSD95 and Homer1, as well as CB1R and the neuromodulatory protein HINT1, were measured in the hippocampus. pTHC offspring exhibited deficits in spatial and object recognition memory and reversal learning, increased locomotor activity, increased NR1-, decreased NR2A- and PSD95-, increased mGluR5- and Homer1-, and augmented CB1R- and HINT1-hippocampal mRNA levels. Our data shows that pTHC is associated with specific impairment in spatial cognitive processing and effectors of hippocampal neuroplasticity and suggests novel targets for future pharmacological challenges.

8.
Curr Biol ; 33(22): 5011-5022.e6, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37879332

RESUMEN

Repeated exposure to psychostimulants, such as amphetamine, causes a long-lasting enhancement in the behavioral responses to the drug, called behavioral sensitization.1 This phenomenon involves several neuronal systems and brain areas, among which the dorsal striatum plays a key role.2 The endocannabinoid system (ECS) has been proposed to participate in this effect, but the neuronal basis of this interaction has not been investigated.3 In the CNS, the ECS exerts its functions mainly acting through the cannabinoid type-1 (CB1) receptor, which is highly expressed at terminals of striatal medium spiny neurons (MSNs) belonging to both the direct and indirect pathways.4 In this study, we show that, although striatal CB1 receptors are not involved in the acute response to amphetamine, the behavioral sensitization and related synaptic changes require the activation of CB1 receptors specifically located at striatopallidal MSNs (indirect pathway). These results highlight a new mechanism of psychostimulant sensitization, a phenomenon that plays a key role in the health-threatening effects of these drugs.


Asunto(s)
Cannabinoides , Estimulantes del Sistema Nervioso Central , Anfetamina/farmacología , Anfetamina/metabolismo , Receptores de Cannabinoides/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/metabolismo , Neuronas/metabolismo , Cuerpo Estriado/fisiología , Endocannabinoides/farmacología , Cannabinoides/farmacología
9.
Neuron ; 111(12): 1887-1897.e6, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37098353

RESUMEN

Corticosteroid-mediated stress responses require the activation of complex brain circuits involving mitochondrial activity, but the underlying cellular and molecular mechanisms are scantly known. The endocannabinoid system is implicated in stress coping, and it can directly regulate brain mitochondrial functions via type 1 cannabinoid (CB1) receptors associated with mitochondrial membranes (mtCB1). In this study, we show that the impairing effect of corticosterone in the novel object recognition (NOR) task in mice requires mtCB1 receptors and the regulation of mitochondrial calcium levels in neurons. Different brain circuits are modulated by this mechanism to mediate the impact of corticosterone during specific phases of the task. Thus, whereas corticosterone recruits mtCB1 receptors in noradrenergic neurons to impair NOR consolidation, mtCB1 receptors in local hippocampal GABAergic interneurons are required to inhibit NOR retrieval. These data reveal unforeseen mechanisms mediating the effects of corticosteroids during different phases of NOR, involving mitochondrial calcium alterations in different brain circuits.


Asunto(s)
Neuronas Adrenérgicas , Corticosterona , Ratones , Animales , Corticosterona/farmacología , Receptores de Cannabinoides , Calcio , Mitocondrias , Endocannabinoides , Receptor Cannabinoide CB1 , Hipocampo/fisiología
10.
Front Psychiatry ; 13: 996965, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159952

RESUMEN

During adolescence, internal and external factors contribute to engaging with alcohol binge drinking (ABD), putting at risk the neurodevelopment of brain regions crucial for emotional control and stress coping. This research assessed the prevalence of ABD in late adolescent students of Southern Italy and characterized their psychological profile and drinking motives. Translational effects of alcohol binge drinking in the animal model were also studied. Seven hundred and fifty-nine high school students of both sexes (aged 18-20) were recruited. Alcohol Use Disorder Identification Test-Consumption (AUDIT-C), Drinking Motives Questionnaire-Revised Short Form, Millon Clinical Multiaxial Inventory-Third Ed., State-Trait Anxiety Inventory, Connor-Davidson Resilience Scale, and Basic Self-Esteem Scale identified alcohol habits, drinking motives, and psychopathological profile. Eighty-five percentage of the students drank alcohol and 28% of them engaged in ABD; AUDIT-C correlated with enhancement, coping, and conformity motives. ABD was related to a greater likelihood of presenting clinical syndromes and personality disorders, as well as low resilience and self-esteem. Thereafter, in the pre-clinical model, adolescent male rats were exposed to alcohol (3.5 g/kg) in an intermittent binge-like paradigm and tested during prolonged abstinence. Rats were evaluated for anxiety-like behavior, motivated behaviors, resilience, and stress response following a psychosocial challenge. Binge-like alcohol-exposed adolescent rats displayed high integrated z-score for social- and novelty-induced anxiety, altered motivation-driven output, decreased resilience, and a blunted HPA axis response to psychosocial stress, with respect to respective controls. Our data confirm that ABD is the chosen pattern of drinking in a significant percentage of high school students in Southern Italy, and highlights AUDIT-C score as a relevant parameter able to predict the occurrence of affective disturbances. The evidence from the preclinical model shows that ABD produces detrimental consequences in the adolescent rat brain, resulting in negative affect, emotional dysregulation, and aberrant stress response, pointing to decreasing excessive alcohol drinking as a primary goal for the global act for brain health.

11.
Artículo en Inglés | MEDLINE | ID: mdl-35627691

RESUMEN

In recent years, the mode of alcoholic intake known as binge drinking (BD) has become a common practice, especially among adolescents who, due to socio-environmental motives, tend to reach a rapid state of drunkenness. This drunkeness leads to alterations in brain areas responsible for executive functions and cognitive processes, as well as to the genesis of factors that predispose to lasting addiction. Likewise, nicotine leads to a comparable degree of addiction. On this basis, the aim of this research was to evaluate, on a cohort of 349 high school students (15−17 years old) in the province of Palermo, the following: (I) the drinking model of alcoholic beverages; (II) the use of nicotine and the degree of dependence; (III) the correlation between the consumption of alcoholic beverages and the use of nicotine. We employed the AUDIT-C test and the Fagerström test, two valid and standard instruments, in order to assess alcohol and nicotine use, respectively. Statistical analysis of the data showed that male and female students consumed alcohol prominently in a BD mode (77.2%, audit score (AS) 3.497, confidence interval (CI) 3.206−3.788; 69.6%, AS 2.793, CI 2.412−3.274) and nicotine (41.5%, Fagerström score (FS) 3.882, CI 3.519−4.245; 28%, FS 3.286, CI 2.547−4.024). Furthermore, a positive correlation between alcohol consumption and nicotine use was found for male (r = 0.6798, p < 0.0001) and female (r = 0.6572, p < 0.0001) students. This study provided further insights into the use of legal substances of abuse in adolescents, evidencing the obvious need for the promotion of specific school educational programs aimed at the wellbeing of youth populations.


Asunto(s)
Consumo de Bebidas Alcohólicas , Nicotina , Adolescente , Consumo de Bebidas Alcohólicas/psicología , Bebidas Alcohólicas , Etanol , Femenino , Humanos , Masculino , Estudiantes
12.
Physiol Behav ; 238: 113481, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089704

RESUMEN

Aim of the research was to investigate whether a temporal structure could be detected in the behavioural response to an aversive stimulation. A fear-related memory task was used in rats, placed in a modified version of the Novel Object Recognition task known as Emotional Object Recognition task, i.e. a behavioural assay that orbits around the declarative memory for an aversive experience. To this purpose, twelve male Wistar rats, divided in two groups (Control and Aversive memory), observed after 4 h (OR4h) and after 24 h (OR24h) from the delivery of an aversive stimulation, associated to a specific object, were used. Data were evaluated both in terms of conventional quantitative approaches and by means of T-pattern analysis, namely a multivariate technique able to unveil the temporal structure of behaviour and the relationships amongst the behavioural items in time. Results evidenced several changes between groups and over time as well. Mean occurrences and mean durations showed significant differences between OR4h and OR24h sessions and between Control and Aversive memory groups for behavioural items of Exploration, Object-related aversion and Immobility. T-pattern analysis revealed important changes of behavioural variability, complexity and repetitiveness, (i.e., the three main qualitative features of T-patterns) in the Aversive memory group. These outcomes highlight a simpler and linear behavioural profile, focused only on specific sequences of particularly repetitive events. Overall, the present study demonstrates a) the presence of a temporal organization of fear-related behavioural events and b) the influence of learning on the modifications observed over time.


Asunto(s)
Emociones , Conducta Exploratoria , Animales , Miedo , Masculino , Ratas , Ratas Wistar , Percepción Visual
13.
Biomedicines ; 9(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34572345

RESUMEN

Binge alcohol consumption among adolescents affects the developing neural networks underpinning reward and stress processing in the nucleus accumbens (NAc). This study explores in rats the long-lasting effects of early intermittent exposure to intoxicating alcohol levels at adolescence, on: (1) the response to natural positive stimuli and inescapable stress; (2) stress-axis functionality; and (3) dopaminergic and glutamatergic neuroadaptation in the NAc. We also assess the potential effects of the non-intoxicating phytocannabinoid cannabidiol, to counteract (or reverse) the development of detrimental consequences of binge-like alcohol exposure. Our results show that adolescent binge-like alcohol exposure alters the sensitivity to positive stimuli, exerts social and novelty-triggered anxiety-like behaviour, and passive stress-coping during early and prolonged withdrawal. In addition, serum corticosterone and hypothalamic and NAc corticotropin-releasing hormone levels progressively increase during withdrawal. Besides, NAc tyrosine hydroxylase levels increase at late withdrawal, while the expression of dopamine transporter, D1 and D2 receptors is dynamically altered during binge and withdrawal. Furthermore, the expression of markers of excitatory postsynaptic signaling-PSD95; Homer-1 and -2 and the activity-regulated spine-morphing proteins Arc, LIM Kinase 1 and FOXP1-increase at late withdrawal. Notably, subchronic cannabidiol, during withdrawal, attenuates social- and novelty-induced aversion and passive stress-coping and rectifies the hyper-responsive stress axis and NAc dopamine and glutamate-related neuroplasticity. Overall, the exposure to binge-like alcohol levels in adolescent rats makes the NAc, during withdrawal, a locus minoris resistentiae as a result of perturbations in neuroplasticity and in stress-axis homeostasis. Cannabidiol holds a promising potential for increasing behavioural, neuroendocrine and molecular resilience against binge-like alcohol harmful effects.

14.
Neurobiol Stress ; 14: 100286, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33392367

RESUMEN

Translational animal models for studying post-traumatic stress disorder (PTSD) are valuable for elucidating the poorly understood neurobiology of this neuropsychiatric disorder. These models should encompass crucial features, including persistence of PTSD-like phenotypes triggered after exposure to a single traumatic event, trauma susceptibility/resilience and predictive validity. Here we propose a novel arousal-based individual screening (AIS) model that recapitulates all these features. The AIS model was designed by coupling the traumatization (24 h restraint) of C57BL/6 J mice with a novel individual screening. This screening consists of z-normalization of post-trauma changes in startle reactivity, which is a measure of arousal depending on neural circuits conserved across mammals. Through the AIS model, we identified susceptible mice showing long-lasting hyperarousal (up to 56 days post-trauma), and resilient mice showing normal arousal. Susceptible mice further showed persistent PTSD-like phenotypes including exaggerated fear reactivity and avoidance of trauma-related cue (up to 75 days post-trauma), increased avoidance-like behavior and social/cognitive impairment. Conversely, resilient mice adopted active coping strategies, behaving like control mice. We further uncovered novel transcriptional signatures driven by PTSD-related genes as well as dysfunction of hypothalamic-pituitary-adrenal axis, which corroborated the segregation in susceptible/resilient subpopulations obtained through the AIS model and correlated with trauma susceptibility/resilience. Impaired hippocampal synaptic plasticity was also observed in susceptible mice. Finally, chronic treatment with paroxetine ameliorated the PTSD-like phenotypes of susceptible mice. These findings indicate that the AIS model might be a new translational animal model for the study of crucial features of PTSD. It might shed light on the unclear PTSD neurobiology and identify new pharmacological targets for this difficult-to-treat disorder.

15.
Front Behav Neurosci ; 14: 583122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33100982

RESUMEN

Perinatal alcohol exposure affects ontogenic neurodevelopment, causing physical and functional long-term abnormalities with limited treatment options. This study investigated long-term consequences of continuous and intermittent maternal alcohol drinking on behavioral readouts of cognitive function and alcohol vulnerability in the offspring. The effects of environmental enrichment (EE) during adolescence were also evaluated. Female rats underwent continuous alcohol drinking (CAD)-or intermittent alcohol drinking paradigm (IAD), along pregestation, gestation, and lactation periods-equivalent to the whole gestational period in humans. Male offspring were reared in standard conditions or EE until adulthood and were then assessed for declarative memory in the novel object recognition test; spatial learning, cognitive flexibility, and reference memory in the Morris water maze (MWM); alcohol consumption and relapse by a two-bottle choice paradigm. Our data show that perinatal CAD decreased locomotor activity, exploratory behavior, and declarative memory with respect to controls, whereas perinatal IAD displayed impaired declarative memory and spatial learning and memory. Moreover, both perinatal alcohol-exposed offspring showed higher vulnerability to alcohol consummatory behavior than controls, albeit perinatal IAD rats showed a greater alcohol consumption and relapse behavior with respect to perinatal-CAD progeny. EE ameliorated declarative memory in perinatal CAD, while it mitigated spatial learning and reference memory impairment in perinatal-IAD progeny. In addition, EE decreased vulnerability to alcohol in both control and perinatal alcohol-exposed rats. Maternal alcohol consumption produces drinking pattern-related long-term consequences on cognition and vulnerability to alcohol in the offspring. However, increased positive environmental stimuli during adolescence may curtail the detrimental effects of developmental alcohol exposure.

16.
Front Behav Neurosci ; 14: 9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32082129

RESUMEN

The perinatal window is a critical developmental time when abnormal gestational stimuli may alter the development of the stress system that, in turn, influences behavioral and physiological responses in the newborns. Individual differences in stress reactivity are also determined by variations in maternal care, resulting from environmental manipulations. Despite glucocorticoids are the primary programming factor for the offspring's stress response, therapeutic corticosteroids are commonly used during late gestation to prevent preterm negative outcomes, exposing the offspring to potentially aberrant stress reactivity later in life. Thus, in this study, we investigated the consequences of one daily s.c. injection of corticosterone (25 mg/kg), from gestational day (GD) 14-16, and its interaction with offspring early handling, consisting in a brief 15-min maternal separation until weaning, on: (i) maternal behavior; and (ii) behavioral reactivity, emotional state and depressive-like behavior in the adolescent offspring. Corticosterone plasma levels, under non-shock- and shock-induced conditions, were also assessed. Our results show that gestational exposure to corticosterone was associated with diminished maternal care, impaired behavioral reactivity, increased emotional state and depressive-like behavior in the offspring, associated with an aberrant corticosterone response. The early handling procedure, which resulted in increased maternal care, was able to counteract the detrimental effects induced by gestational corticosterone exposure both in the behavioral- and neurochemical parameters examined. These findings highlight the potentially detrimental consequences of targeting the stress system during pregnancy as a vulnerability factor for the occurrence of emotional and affective distress in the adolescent offspring. Maternal extra-care proves to be a protective strategy that confers resiliency and restores homeostasis.

17.
J Psychopharmacol ; 34(6): 663-679, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32338122

RESUMEN

BACKGROUND: Cannabinoid consumption during pregnancy has been increasing on the wave of the broad-based legalisation of cannabis in Western countries, raising concern about the putative detrimental outcomes on foetal neurodevelopment. Indeed, since the endocannabinoid system regulates synaptic plasticity, emotional and cognitive processes from early stages of life interfering with it and other excitability endogenous modulators, such as neuropeptide Y (NPY), might contribute to the occurrence of a vulnerable phenotype later in life. AIMS: This research investigated whether in utero exposure to Δ9-tetrahydrocannabinol (THC) may induce deficits in emotional/cognitive processes and alcohol vulnerability in adolescent offspring. NPY and excitatory postsynaptic density (PSD) machinery were measured as markers of neurobiological vulnerability. METHODS: Following in utero THC exposure (2 mg/kg delivered subcutaneously), preadolescent male rat offspring were assessed for: behavioural reactivity in the open field test, neutral declarative memory and aversive limbic memory in the Novel Object and Emotional Object Recognition tests, immunofluorescence for NPY neurons and the PSD proteins Homer-1, 1b/c and 2 in the prefrontal cortex, amygdala and nucleus accumbens at adolescence (cohort 1); and instrumental learning, alcohol taking, relapse and conflict behaviour in the operant chamber throughout adolescence until early adulthood (cohort 2). RESULTS: In utero THC-exposed adolescent rats showed: (a) increased locomotor activity; (b) no alteration in neutral declarative memory; (c) impaired aversive limbic memory; (d) decreased NPY-positive neurons in limbic regions; (e) region-specific variations in Homer-1, 1b/c and 2 immunoreactivity; (f) decreased instrumental learning and increased alcohol drinking, relapse and conflict behaviour in the operant chamber. CONCLUSION: Gestational THC impaired the formation of memory traces when integration between environmental encoding and emotional/motivational processing was required and promoted the development of alcohol-addictive behaviours. The abnormalities in NPY signalling and PSD make-up may represent the common neurobiological background, suggesting new targets for future research.


Asunto(s)
Consumo de Bebidas Alcohólicas/epidemiología , Dronabinol/farmacología , Memoria/efectos de los fármacos , Neuropéptido Y/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/etiología , Conflicto Psicológico , Dronabinol/administración & dosificación , Femenino , Masculino , Actividad Motora/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Wistar
18.
Cell Rep ; 32(7): 108046, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32814049

RESUMEN

A complex array of inhibitory interneurons tightly controls hippocampal activity, but how such diversity specifically affects memory processes is not well understood. We find that a small subclass of type 1 cannabinoid receptor (CB1R)-expressing hippocampal interneurons determines episodic-like memory consolidation by linking dopamine D1 receptor (D1R) signaling to GABAergic transmission. Mice lacking CB1Rs in D1-positive cells (D1-CB1-KO) display impairment in long-term, but not short-term, novel object recognition memory (NOR). Re-expression of CB1Rs in hippocampal D1R-positive cells rescues this NOR deficit. Learning induces an enhancement of in vivo hippocampal long-term potentiation (LTP), which is absent in mutant mice. CB1R-mediated NOR and the associated LTP facilitation involve local control of GABAergic inhibition in a D1-dependent manner. This study reveals that hippocampal CB1R-/D1R-expressing interneurons control NOR memory, identifying a mechanism linking the diversity of hippocampal interneurons to specific behavioral outcomes.


Asunto(s)
Hipocampo/fisiología , Memoria/fisiología , Reconocimiento en Psicología/fisiología , Animales , Masculino , Ratones
19.
J Psychopharmacol ; 32(2): 204-214, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28880120

RESUMEN

While a lot is known about the mechanisms promoting aversive learning, the impact of rewarding factors on memory has received comparatively less attention. This research investigates reward-related explicit memory in male rats, by taking advantage of the emotional-object recognition test. This is based on the prior association, during conditioned learning, between a rewarding experience (the encounter with a receptive female rat) and an object; afterwards rat discrimination and recognition of the 'emotional object' is recorded in the presence of a novel object, as a measure of positive limbic memory formation. Since endocannabinoids are critical for processing reward and motivation, the consequences of the stimulation of cannabinoid signalling are also assessed by the administration of WIN 55,212-2 at pre- and post-conditioning time. Our results show that rats encode the association between object and rewarding experience, form positive limbic memory of the emotional object, and retrieve this information in the face of novelty. Stimulation of the cannabinoid system at pre-conditioning time is able to strengthen reward-related explicit memory in the presence of novelty, whereas post-conditioning activation increases approach behaviour to novel stimuli. The assessment of limbic memory by the emotional-object recognition test can help unveiling the addictive and confounding properties of psychotropic drugs.


Asunto(s)
Benzoxazinas/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Endocannabinoides/metabolismo , Morfolinas/farmacología , Naftalenos/farmacología , Recompensa , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Emociones , Femenino , Sistema Límbico/efectos de los fármacos , Sistema Límbico/metabolismo , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Motivación/efectos de los fármacos , Motivación/fisiología , Ratas , Ratas Wistar , Reconocimiento en Psicología/fisiología
20.
Front Psychiatry ; 9: 150, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29743872

RESUMEN

Although binge drinking is on the rise in women of reproductive age and during pregnancy, the consequences in the offspring, in particular the inheritance of alcohol-related mood disturbances and alcohol abuse vulnerability, are still poorly investigated. In this study, we modeled both Habitual- and Binge Alcohol Drinking (HAD and BAD) in female rats by employing a two-bottle choice paradigm, with 20% alcohol and water. The exposure started 12 weeks before pregnancy and continued during gestation and lactation. The consequences induced by the two alcohol drinking patterns in female rats were assessed before conception in terms of behavioral reactivity, anxiety- and depressive-like behavior. Afterwards, from adolescence to young-adulthood, male offspring was assessed for behavioral phenotype and alcohol abuse vulnerability. At pre-conceptional time BAD female rats showed higher mean alcohol intake and preference than HAD group; differences in drinking trajectories were attenuated during pregnancy and lactation. Pre-conceptional BAD induced a prevalent depressive/anhedonic-like behavior in female rats, rather than an increase in anxiety-like behavior, as observed in HAD rats. In the adolescent offspring, peri-gestational BAD did not affect behavioral reactivity in the open field and anxiety-like behavior in the elevated plus maze. Rather, BAD dams offspring displayed higher despair-behavior and lower social interaction with respect to control- and HAD dams progeny. Notably, only binge drinking exposure increased offspring vulnerability to alcohol abuse and relapse following forced abstinence. This is the first report showing that binge-like alcohol consumption from pre-conceptional until weaning induces relevant consequences in the affective phenotype of both the mothers and the offspring, and that such effects include heightened alcohol abuse vulnerability in the offspring. These findings highlight the need for more incisive public education campaigns about detrimental consequences of peri-gestational alcohol exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA