Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
EMBO J ; 43(2): 250-276, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177505

RESUMEN

Expansion mutations in polyalanine stretches are associated with a growing number of diseases sharing a high degree of genotypic and phenotypic commonality. These similarities prompted us to query the normal function of physiological polyalanine stretches and to investigate whether a common molecular mechanism is involved in these diseases. Here, we show that UBA6, an E1 ubiquitin-activating enzyme, recognizes a polyalanine stretch within its cognate E2 ubiquitin-conjugating enzyme USE1. Aberrations in this polyalanine stretch reduce ubiquitin transfer to USE1 and, subsequently, polyubiquitination and degradation of its target, the ubiquitin ligase E6AP. Furthermore, we identify competition for the UBA6-USE1 interaction by various proteins with polyalanine expansion mutations in the disease state. The deleterious interactions of expanded polyalanine tract proteins with UBA6 in mouse primary neurons alter the levels and ubiquitination-dependent degradation of E6AP, which in turn affects the levels of the synaptic protein Arc. These effects are also observed in induced pluripotent stem cell-derived autonomic neurons from patients with polyalanine expansion mutations, where UBA6 overexpression increases neuronal resilience to cell death. Our results suggest a shared mechanism for such mutations that may contribute to the congenital malformations seen in polyalanine tract diseases.


Asunto(s)
Péptidos , Enzimas Activadoras de Ubiquitina , Ubiquitina , Humanos , Animales , Ratones , Ubiquitinación , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Mutación
2.
Nature ; 538(7623): 99-103, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27680698

RESUMEN

Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are crucial for many forms of neuronal plasticity, including structural long-term potentiation (sLTP), which is a correlate of an animal's learning. However, it is unknown whether BDNF release and TrkB activation occur during sLTP, and if so, when and where. Here, using a fluorescence resonance energy transfer-based sensor for TrkB and two-photon fluorescence lifetime imaging microscopy, we monitor TrkB activity in single dendritic spines of CA1 pyramidal neurons in cultured murine hippocampal slices. In response to sLTP induction, we find fast (onset < 1 min) and sustained (>20 min) activation of TrkB in the stimulated spine that depends on NMDAR (N-methyl-d-aspartate receptor) and CaMKII signalling and on postsynaptically synthesized BDNF. We confirm the presence of postsynaptic BDNF using electron microscopy to localize endogenous BDNF to dendrites and spines of hippocampal CA1 pyramidal neurons. Consistent with these findings, we also show rapid, glutamate-uncaging-evoked, time-locked BDNF release from single dendritic spines using BDNF fused to superecliptic pHluorin. We demonstrate that this postsynaptic BDNF-TrkB signalling pathway is necessary for both structural and functional LTP. Together, these findings reveal a spine-autonomous, autocrine signalling mechanism involving NMDAR-CaMKII-dependent BDNF release from stimulated dendritic spines and subsequent TrkB activation on these same spines that is crucial for structural and functional plasticity.


Asunto(s)
Comunicación Autocrina , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Espinas Dendríticas/ultraestructura , Activación Enzimática , Femenino , Transferencia Resonante de Energía de Fluorescencia , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes , Células HeLa , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/ultraestructura , Humanos , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Microscopía de Fluorescencia por Excitación Multifotónica , Densidad Postsináptica/metabolismo , Células Piramidales/metabolismo , Células Piramidales/ultraestructura , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Técnicas de Cultivo de Tejidos
3.
Nat Methods ; 13(12): 989-992, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27798609

RESUMEN

We describe a red-shifted fluorescence resonance energy transfer (FRET) pair optimized for dual-color fluorescence lifetime imaging (FLIM). This pair utilizes a newly developed FRET donor, monomeric cyan-excitable red fluorescent protein (mCyRFP1), which has a large Stokes shift and a monoexponential fluorescence lifetime decay. When used together with EGFP-based biosensors, the new pair enables simultaneous imaging of the activities of two signaling molecules in single dendritic spines undergoing structural plasticity.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/química , Imagen Óptica/métodos , Animales , Electroporación , Retículo Endoplásmico/metabolismo , Femenino , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Fotoblanqueo , Embarazo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Proteína Fluorescente Roja
4.
Proc Natl Acad Sci U S A ; 112(25): E3291-9, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056260

RESUMEN

Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs.


Asunto(s)
Hipocampo/fisiología , Homeostasis , Neuronas/metabolismo , Receptores de GABA-B/metabolismo , Animales , Células Cultivadas , Potenciales Evocados , Hipocampo/citología , Ratones , Ratones Endogámicos BALB C
5.
J Cell Biol ; 222(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36574264

RESUMEN

Contractile epithelial tubes are found in various organs, such as lung airways and blood capillaries. Their ability to sense luminal pressure and respond with adequate contractility is essential for their physiology, and its mis-regulation results in diseases such as asthma and hypertension. Here, we describe a mechanoresponsive regulatory pathway downstream of tissue stretching that controls contraction of the C. elegans spermatheca, a tubular structure where fertilization occurs. Using live-imaging, we show that ovulation-induced stretching of spermathecal cells leads to recruitment of the RhoGEF RHGF-1 to stress fibers, which activates RHO-1 and myosin II in a positive feedback loop. Through deletion analysis, we identified the PDZ domain of RHGF-1 as responsible for F-actin binding, and genetic epistasis analysis with the RhoGAP spv-1 demonstrated that tension-dependent recruitment of RHGF-1 to F-actin is required for robust spermathecal contractility. Our study illustrates how mechanosensitive regulators of Rho GTPases provide epithelial tubes the ability to tune their contractility in response to internal pressure.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Femenino , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Fibras de Estrés/metabolismo , Contracción Muscular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteínas Activadoras de GTPasa/metabolismo
6.
Adv Mater ; 35(51): e2304654, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37753928

RESUMEN

Monoclonal antibodies (mAbs) hold promise in treating Parkinson's disease (PD), although poor delivery to the brain hinders their therapeutic application. In the current study, it is demonstrated that brain-targeted liposomes (BTL) enhance the delivery of mAbs across the blood-brain-barrier (BBB) and into neurons, thereby allowing the intracellular and extracellular treatment of the PD brain. BTL are decorated with transferrin to improve brain targeting through overexpressed transferrin-receptors on the BBB during PD. BTL are loaded with SynO4, a mAb that inhibits alpha-synuclein (AS) aggregation, a pathological hallmark of PD. It is shown that 100-nm BTL cross human BBB models intact and are taken up by primary neurons. Within neurons, SynO4 is released from the nanoparticles and bound to its target, thereby reducing AS aggregation, and enhancing neuronal viability. In vivo, intravenous BTL administration results in a sevenfold increase in mAbs in brain cells, decreasing AS aggregation and neuroinflammation. Treatment with BTL also improve behavioral motor function and learning ability in mice, with a favorable safety profile. Accordingly, targeted nanotechnologies offer a valuable platform for drug delivery to treat brain neurodegeneration.


Asunto(s)
Enfermedad de Parkinson , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Síntomas Conductuales , Encéfalo/metabolismo , Liposomas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Transferrinas
7.
J Neurosci ; 31(35): 12523-32, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21880914

RESUMEN

Presynaptic inhibition via G-protein-coupled receptors (GPCRs) and voltage-gated Ca(2+) channels constitutes a widespread regulatory mechanism of synaptic strength. Yet, the mechanism of intermolecular coupling underlying GPCR-mediated signaling at central synapses remains unresolved. Using FRET spectroscopy, we provide evidence for formation of spatially restricted (<100 Å) complexes between GABA(B) receptors composed of GB(1a)/GB(2) subunits, Gα(o)ß(1)γ(2) G-protein heterotrimer, and Ca(V)2.2 channels in hippocampal boutons. GABA release was not required for the assembly but for structural reorganization of the precoupled complex. Unexpectedly, GB(1a) deletion disrupted intermolecular associations within the complex. The GB(1a) proximal C-terminal domain was essential for association of the receptor, Ca(V)2.2 and Gßγ, but was dispensable for agonist-induced receptor activation and cAMP inhibition. Functionally, boutons lacking this complex-formation domain displayed impaired presynaptic inhibition of Ca(2+) transients and synaptic vesicle release. Thus, compartmentalization of the GABA(B1a) receptor, Gßγ, and Ca(V)2.2 channel in a signaling complex is required for presynaptic inhibition at hippocampal synapses.


Asunto(s)
Hipocampo/citología , Inhibición Neural/fisiología , Terminales Presinápticos/fisiología , Receptores de GABA-B/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Análisis de Varianza , Animales , Baclofeno/farmacología , Calcio/metabolismo , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , AMP Cíclico/metabolismo , Estimulación Eléctrica , Antagonistas del GABA/farmacología , Agonistas de Receptores GABA-B/farmacología , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Microscopía Confocal , Mutación/genética , Inhibición Neural/efectos de los fármacos , Compuestos Organofosforados/farmacología , Toxina del Pertussis/farmacología , Picrotoxina/farmacología , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de GABA-B/deficiencia , Transducción de Señal/genética , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sinapsis/efectos de los fármacos , Vesículas Sinápticas/metabolismo
8.
Methods Mol Biol ; 2438: 31-43, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147933

RESUMEN

With the development of fluorescent proteins (FPs) and advanced optical microscopy techniques, Förster or fluorescence resonance energy transfer (FRET) has become a powerful tool for real-time noninvasive visualization of a variety of biological processes, including kinase activities, with high spatiotemporal resolution in living cells and organisms. FRET can be detected in appropriately configured microscopes as changes in fluorescence intensity, lifetime, and anisotropy. Here, we describe the preparation of samples expressing FP-based FRET sensors for RhoA kinase, intensity- and lifetime-based FRET imaging, and postimaging data analysis.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas de Unión al GTP rho , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína Fluorescente Roja
9.
Curr Opin Neurobiol ; 69: 68-75, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33684848

RESUMEN

The activity patterns of Individual neurons are highly coordinated and synchronized within neuronal circuits in the brain, much like individual orchestra tools playing together to achieve harmony. Inside neurons, complex protein signaling cascades provide the molecular notes and instructions to each neuron. However, until recently, the dynamic nature of intracellular protein signaling in the intact brain has been eluded. In this review, we focus on recent advancements and the development of approaches to study neuronal signaling dynamics in vivo. We will discuss approaches for the implementation of biosensors for monitoring of protein signaling activities at the levels of individual synapses, dendritic branches, cell-wide neuromodulation, and transcription in the nucleus. Future improvement in these methods and their utilization will undoubtedly yield new insights regarding the intricate link between functional and molecular neuronal dynamics and how they underlie animal's behavior.


Asunto(s)
Neuronas , Sinapsis , Animales , Encéfalo , Transducción de Señal
10.
Front Genome Ed ; 2: 602970, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34713226

RESUMEN

Neurons and glia are highly polarized cells with extensive subcellular structures extending over large distances from their cell bodies. Previous research has revealed elaborate protein signaling complexes localized within intracellular compartments. Thus, exploring the function and the localization of endogenous proteins is vital to understanding the precise molecular mechanisms underlying the synapse, cellular, and circuit function. Recent advances in CRISPR/Cas9-based genome editing techniques have allowed researchers to rapidly develop transgenic animal models and perform single-cell level genome editing in the mammalian brain. Here, we introduce and comprehensively review the latest techniques for genome-editing in whole animals using fertilized eggs and methods for gene editing in specific neuronal populations in the adult or developing mammalian brain. Finally, we describe the advantages and disadvantages of each technique, as well as the challenges that lie ahead to advance the generation of methodologies for genome editing in the brain using the current CRISPR/Cas9 system.

11.
Neuron ; 105(5): 799-812.e5, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31883788

RESUMEN

Sensory experiences cause long-term modifications of neuronal circuits by modulating activity-dependent transcription programs that are vital for regulation of long-term synaptic plasticity and memory. However, it has not been possible to precisely determine the interaction between neuronal activity patterns and transcription factor activity. Here we present a technique using two-photon fluorescence lifetime imaging (2pFLIM) with new FRET biosensors to chronically image in vivo signaling of CREB, an activity-dependent transcription factor important for synaptic plasticity, at single-cell resolution. Simultaneous imaging of the red-shifted CREB sensor and GCaMP permitted exploration of how experience shapes the interplay between CREB and neuronal activity in the neocortex of awake mice. Dark rearing increased the sensitivity of CREB activity to Ca2+ elevations and prolonged the duration of CREB activation to more than 24 h in the visual cortex. This technique will allow researchers to unravel the transcriptional dynamics underlying experience-dependent plasticity in the brain.


Asunto(s)
Calcio/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neocórtex/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Animales , Oscuridad , Transferencia Resonante de Energía de Fluorescencia , Ratones , Neocórtex/citología , Vías Nerviosas , Neuronas/citología , Estimulación Luminosa , Transducción de Señal , Análisis de la Célula Individual , Corteza Somatosensorial/citología , Corteza Somatosensorial/metabolismo , Corteza Visual/citología , Corteza Visual/metabolismo
12.
Neuron ; 94(4): 800-808.e4, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28521133

RESUMEN

CaMKII plays a critical role in decoding calcium (Ca2+) signals to initiate long-lasting synaptic plasticity. However, the properties of CaMKII that mediate Ca2+ signals in spines remain elusive. Here, we measured CaMKII activity in spines using fast-framing two-photon fluorescence lifetime imaging. Following each pulse during repetitive Ca2+ elevations, CaMKII activity increased in a stepwise manner. Thr286 phosphorylation slows the decay of CaMKII and thus lowers the frequency required to induce spine plasticity by several fold. In the absence of Thr286 phosphorylation, increasing the stimulation frequency results in high peak mutant CaMKIIT286A activity that is sufficient for inducing plasticity. Our findings demonstrate that Thr286 phosphorylation plays an important role in induction of LTP by integrating Ca2+ signals, and it greatly promotes, but is dispensable for, the activation of CaMKII and LTP.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Potenciación a Largo Plazo/fisiología , Células Piramidales/metabolismo , Animales , Región CA1 Hipocampal/fisiología , Hipocampo/metabolismo , Hipocampo/fisiología , Ratones , Microscopía Fluorescente , Plasticidad Neuronal , Técnicas de Placa-Clamp , Fosforilación , Células Piramidales/fisiología
13.
Nat Biotechnol ; 34(7): 760-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27240196

RESUMEN

Orange-red fluorescent proteins (FPs) are widely used in biomedical research for multiplexed epifluorescence microscopy with GFP-based probes, but their different excitation requirements make multiplexing with new advanced microscopy methods difficult. Separately, orange-red FPs are useful for deep-tissue imaging in mammals owing to the relative tissue transmissibility of orange-red light, but their dependence on illumination limits their sensitivity as reporters in deep tissues. Here we describe CyOFP1, a bright, engineered, orange-red FP that is excitable by cyan light. We show that CyOFP1 enables single-excitation multiplexed imaging with GFP-based probes in single-photon and two-photon microscopy, including time-lapse imaging in light-sheet systems. CyOFP1 also serves as an efficient acceptor for resonance energy transfer from the highly catalytic blue-emitting luciferase NanoLuc. An optimized fusion of CyOFP1 and NanoLuc, called Antares, functions as a highly sensitive bioluminescent reporter in vivo, producing substantially brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins.


Asunto(s)
Mediciones Luminiscentes/métodos , Proteínas Luminiscentes/síntesis química , Proteínas Luminiscentes/farmacocinética , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Imagen Molecular/métodos , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacocinética , Iluminación/métodos , Coloración y Etiquetado
14.
Nat Biotechnol ; 35(5): 481, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28486470
15.
Nat Biotechnol ; 35(1): 26-27, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28072770
16.
Neuron ; 67(2): 253-67, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20670833

RESUMEN

Presynaptic GABA(B) receptor (GABA(B)R) heterodimers are composed of GB(1a)/GB(2) subunits and critically influence synaptic and cognitive functions. Here, we explored local GABA(B)R activation by integrating optical tools for monitoring receptor conformation and synaptic vesicle release at individual presynaptic boutons of hippocampal neurons. Utilizing fluorescence resonance energy transfer (FRET) spectroscopy, we detected a wide range of FRET values for CFP/YFP-tagged GB(1a)/GB(2) receptors that negatively correlated with release probabilities at single synapses. High FRET of GABA(B)Rs associated with low release probability. Notably, pharmacological manipulations that either reduced or increased basal receptor activation decreased intersynapse variability of GB(1a)/GB(2) receptor conformation. Despite variability along axons, presynaptic GABA(B)R tone was dendrite specific, having a greater impact on synapses at highly innervated proximal branches. Prolonged neuronal inactivity reduced basal receptor activation, leading to homeostatic augmentation of release probability. Our findings suggest that local variations in basal GABA concentration are a major determinant of GB(1a)/GB(2) conformational variability, which contributes to heterogeneity of neurotransmitter release at hippocampal synapses.


Asunto(s)
Región CA1 Hipocampal/citología , Neuronas/metabolismo , Probabilidad , Receptores de GABA-B/metabolismo , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Análisis de Varianza , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Baclofeno/farmacología , Calcio/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ácido Egtácico/análogos & derivados , Ácido Egtácico/metabolismo , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , GABAérgicos/farmacología , Técnicas In Vitro , Microscopía Confocal/métodos , Neuronas/efectos de los fármacos , Ácidos Nipecóticos/farmacología , Compuestos Organofosforados/farmacología , Cloruro de Potasio/farmacología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Conformación Proteica/efectos de los fármacos , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Ratas , Ratas Wistar , Receptores de GABA-B/química , Sinapsis/efectos de los fármacos , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA