RESUMEN
Oncogenes are commonly amplified on particles of extrachromosomal DNA (ecDNA) in cancer1,2, but our understanding of the structure of ecDNA and its effect on gene regulation is limited. Here, by integrating ultrastructural imaging, long-range optical mapping and computational analysis of whole-genome sequencing, we demonstrate the structure of circular ecDNA. Pan-cancer analyses reveal that oncogenes encoded on ecDNA are among the most highly expressed genes in the transcriptome of the tumours, linking increased copy number with high transcription levels. Quantitative assessment of the chromatin state reveals that although ecDNA is packaged into chromatin with intact domain structure, it lacks higher-order compaction that is typical of chromosomes and displays significantly enhanced chromatin accessibility. Furthermore, ecDNA is shown to have a significantly greater number of ultra-long-range interactions with active chromatin, which provides insight into how the structure of circular ecDNA affects oncogene function, and connects ecDNA biology with modern cancer genomics and epigenetics.
Asunto(s)
Cromatina/genética , ADN Circular/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , Oncogenes/genética , Línea Celular Tumoral , Cromatina/química , ADN Circular/genética , Humanos , Microscopía Electrónica de Rastreo , Neoplasias/fisiopatologíaRESUMEN
DNA methylation, specifically, methylation of cytosine (C) nucleotides at the 5-carbon position (5-mC), is the most studied and significant epigenetic modification. Here we developed a chemoenzymatic procedure to fluorescently label non-methylated cytosines in CpG context, allowing epigenetic profiling of single DNA molecules spanning hundreds of thousands of base pairs. We used a CpG methyltransferase with a synthetic S-adenosyl-l-methionine cofactor analog to transfer an azide to cytosines instead of the natural methyl group. A fluorophore was then clicked onto the DNA, reporting on the amount and position of non-methylated CpGs. We found that labeling efficiency was increased up to 2-fold by the addition of a nucleosidase, presumably by degrading the inactive by-product of the cofactor after labeling, preventing its inhibitory effect. We used the method to determine the decline in global DNA methylation in a chronic lymphocytic leukemia patient and then performed whole-genome methylation mapping of the model plant Arabidopsis thaliana. Our genome maps show high concordance with published bisulfite sequencing methylation maps. Although mapping resolution is limited by optical detection to 500-1000 bp, the labeled DNA molecules produced by this approach are hundreds of thousands of base pairs long, allowing access to long repetitive and structurally variable genomic regions.
Asunto(s)
Arabidopsis , Metilación de ADN , Arabidopsis/genética , Arabidopsis/metabolismo , Islas de CpG/genética , Citosina , ADN/genética , ADN/metabolismo , Epigénesis Genética , Epigenómica , Humanos , Análisis de Secuencia de ADN/métodos , SulfitosRESUMEN
To combat DNA damage, organisms mount a DNA damage response (DDR) that results in cell cycle regulation, DNA repair and, in severe cases, cell death. Underscoring the importance of gene regulation in this response, studies in Arabidopsis have demonstrated that all of the aforementioned processes rely on SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a NAC family transcription factor (TF) that has been functionally equated to the mammalian tumor suppressor, p53. However, the expression networks connecting SOG1 to these processes remain largely unknown and, although the DDR spans from minutes to hours, most transcriptomic data correspond to single time-point snapshots. Here, we generated transcriptional models of the DDR from GAMMA (γ)-irradiated wild-type and sog1 seedlings during a 24-hour time course using DREM, the Dynamic Regulatory Events Miner, revealing 11 coexpressed gene groups with distinct biological functions and cis-regulatory features. Within these networks, additional chromatin immunoprecipitation and transcriptomic experiments revealed that SOG1 is the major activator, directly targeting the most strongly up-regulated genes, including TFs, repair factors, and early cell cycle regulators, while three MYB3R TFs are the major repressors, specifically targeting the most strongly down-regulated genes, which mainly correspond to G2/M cell cycle-regulated genes. Together these models reveal the temporal dynamics of the transcriptional events triggered by γ-irradiation and connects these events to TFs and biological processes over a time scale commensurate with key processes coordinated in response to DNA damage, greatly expanding our understanding of the DDR.
Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Reparación del ADN/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN/fisiología , Reparación del ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Mutación/genética , Transactivadores/metabolismo , Activación Transcripcional , Transcriptoma/genéticaRESUMEN
DNA methylation is an epigenetic modification that has critical roles in gene silencing, development and genome integrity. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and targeted by 24-nucleotide small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). This pathway requires two plant-specific RNA polymerases: Pol-IV, which functions to initiate siRNA biogenesis, and Pol-V, which functions to generate scaffold transcripts that recruit downstream RdDM factors. To understand the mechanisms controlling Pol-IV targeting we investigated the function of SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1), a Pol-IV-interacting protein. Here we show that SHH1 acts upstream in the RdDM pathway to enable siRNA production from a large subset of the most active RdDM targets, and that SHH1 is required for Pol-IV occupancy at these same loci. We also show that the SHH1 SAWADEE domain is a novel chromatin-binding module that adopts a unique tandem Tudor-like fold and functions as a dual lysine reader, probing for both unmethylated K4 and methylated K9 modifications on the histone 3 (H3) tail. Finally, we show that key residues within both lysine-binding pockets of SHH1 are required in vivo to maintain siRNA and DNA methylation levels as well as Pol-IV occupancy at RdDM targets, demonstrating a central role for methylated H3K9 binding in SHH1 function and providing the first insights into the mechanism of Pol-IV targeting. Given the parallels between methylation systems in plants and mammals, a further understanding of this early targeting step may aid our ability to control the expression of endogenous and newly introduced genes, which has broad implications for agriculture and gene therapy.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Metilación de ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/genética , Epigénesis Genética/genética , Histonas/química , Histonas/metabolismo , Proteínas de Homeodominio/química , Lisina/química , Lisina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Mutación , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismoRESUMEN
Cytosine DNA methylation is evolutionarily ancient, and in eukaryotes this epigenetic modification is associated with gene silencing. Proteins with SRA (SET- or RING-associated) methyl-binding domains are required for the establishment and/or maintenance of DNA methylation in both plants and mammals. The 5-methyl-cytosine (5mC)-binding specificity of several SRA domains have been characterized, and each one has a preference for DNA methylation in different sequence contexts. Here we demonstrate through mobility shift assays and calorimetric measurements that the SU(VAR)3-9 HOMOLOG 5 (SUVH5) SRA domain differs from other SRA domains in that it can bind methylated DNA in all contexts to similar extents. Crystal structures of the SUVH5 SRA domain bound to 5mC-containing DNA in either the fully or hemimethylated CG context or the methylated CHH context revealed a dual flip-out mechanism where both the 5mC and a base (5mC, C, or G, respectively) from the partner strand are simultaneously extruded from the DNA duplex and positioned within binding pockets of individual SRA domains. Our structure-based in vivo studies suggest that a functional SUVH5 SRA domain is required for both DNA methylation and accumulation of the H3K9 dimethyl modification in vivo, suggesting a role for the SRA domain in recruitment of SUVH5 to genomic loci.
Asunto(s)
5-Metilcitosina , Arabidopsis/metabolismo , Metilación de ADN , Histonas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Modelos Moleculares , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Arabidopsis/genética , Calorimetría , ADN/química , ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Metiltransferasas/genética , Mutación/genética , Unión Proteica , Estructura Terciaria de ProteínaRESUMEN
Cytosine DNA methylation is a stable epigenetic mark that is crucial for diverse biological processes, including gene and transposon silencing, imprinting and X chromosome inactivation. Recent findings in plants and animals have greatly increased our understanding of the pathways used to accurately target, maintain and modify patterns of DNA methylation and have revealed unanticipated mechanistic similarities between these organisms. Key roles have emerged for small RNAs, proteins with domains that bind methylated DNA and DNA glycosylases in these processes. Drawing on insights from both plants and animals should deepen our understanding of the regulation and biological significance of DNA methylation.
Asunto(s)
Metilación de ADN/genética , Animales , Islas de CpG , Metilación de ADN/fisiología , ADN de Plantas/genética , ADN de Plantas/metabolismo , Epigénesis Genética , Gametogénesis/genética , Histonas/genética , Histonas/metabolismo , Modelos Genéticos , Plantas/genética , Plantas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismoRESUMEN
DNA methylation is an evolutionarily conserved epigenetic modification that is critical for gene silencing and the maintenance of genome integrity. In Arabidopsis thaliana, the de novo DNA methyltransferase, domains rearranged methyltransferase 2 (DRM2), is targeted to specific genomic loci by 24 nt small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). Biogenesis of the targeting siRNAs is thought to be initiated by the activity of the plant-specific RNA polymerase IV (Pol-IV). However, the mechanism through which Pol-IV is targeted to specific genomic loci and whether factors other than the core Pol-IV machinery are required for Pol-IV activity remain unknown. Through the affinity purification of nuclear RNA polymerase D1 (NRPD1), the largest subunit of the Pol-IV polymerase, we found that several previously identified RdDM components co-purify with Pol-IV, namely RNA-dependent RNA polymerase 2 (RDR2), CLASSY1 (CLSY1), and RNA-directed DNA methylation 4 (RDM4), suggesting that the upstream siRNA generating portion of the RdDM pathway may be more physically coupled than previously envisioned. A homeodomain protein, SAWADEE homeodomain homolog 1 (SHH1), was also found to co-purify with NRPD1; and we demonstrate that SHH1 is required for de novo and maintenance DNA methylation, as well as for the accumulation of siRNAs at specific loci, confirming it is a bonafide component of the RdDM pathway.
Asunto(s)
Proteínas de Arabidopsis/genética , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Homeodominio/genética , ARN Polimerasa Dependiente del ARN/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina/genética , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Plantas Modificadas Genéticamente , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
DNA methylation is a conserved epigenetic modification associated with transposon silencing and gene regulation. The stability of this modification relies on intimate connections between DNA and histone modifications that generate self-reinforcing loops wherein the presence of one mark promotes the other. However, it is becoming increasingly clear that the efficiency of these loops is affected by cross-talk between pathways and by chromatin accessibility, which is heavily influenced by histone variants. Focusing primarily on plants, this review provides an update on the aforementioned self-reinforcing loops, highlights recent advances in understanding how DNA methylation pathways are restricted to prevent encroachment on genes, and discusses the roles of histone variants in compartmentalizing epigenetic pathways within the genome. This multilayered approach facilitates two essential, yet opposing functions, the ability to maintain heritable DNA methylation patterns while retaining the flexibility to modify these patterns during development.
Asunto(s)
Metilación de ADN , Histonas , Metilación de ADN/genética , Histonas/metabolismo , Silenciador del Gen , Cromatina/genética , Epigénesis Genética/genéticaRESUMEN
Posttranslational modifications of histones play important roles in modulating chromatin structure and regulating gene expression. We have previously shown that more than two thirds of Arabidopsis genes contain histone H3 methylation at lysine 4 (H3K4me) and that trimethylation of H3K4 (H3K4me3) is preferentially located at actively transcribed genes. In addition, several Arabidopsis mutants with locus-specific loss of H3K4me have been found to display various developmental abnormalities. These findings suggest that H3K4me3 may play important roles in maintaining the normal expression of a large number of genes. However, the major enzyme(s) responsible for H3K4me3 has yet to be identified in plants, making it difficult to address questions regarding the mechanisms and functions of H3K4me3. Here we described the characterization of SET DOMAIN GROUP 2 (SDG2), a large Arabidopsis protein containing a histone lysine methyltransferase domain. We found that SDG2 homologs are highly conserved in plants and that the Arabidopsis SDG2 gene is broadly expressed during development. In addition, the loss of SDG2 leads to severe and pleiotropic phenotypes, as well as the misregulation of a large number of genes. Consistent with our finding that SDG2 is a robust and specific H3K4 methyltransferase in vitro, the loss of SDG2 leads to a drastic decrease in H3K4me3 in vivo. Taken together, these results suggest that SDG2 is the major enzyme responsible for H3K4me3 in Arabidopsis and that SDG2-dependent H3K4m3 is critical for regulating gene expression and plant development.
Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Genes de Plantas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Secuencia Conservada , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histonas/química , Histonas/metabolismo , Mutación , Filogenia , Plantas Modificadas GenéticamenteRESUMEN
DNA methylation is a conserved modification that must be precisely regulated during development to facilitate its roles in silencing transposable elements and regulating gene expression. In plants, DNA methylation changes during reproduction are widely documented and, in many cases, the underlying mechanisms are well understood. In somatic tissues, the diversity of methylation patterns are only recently emerging but they are often associated with the RNA-directed DNA methylation (RdDM) pathway. Here, we discuss advances in our understanding of how the locus-specific targeting and tissue-specific expression of RdDM proteins regulate methylation patterns, how the targeting of methylation at loci with imperfect homology expands the purview of RdDM, and how natural variation within RdDM factors impacts DNA methylation patterns.
Asunto(s)
Metilación de ADN , Desarrollo de la Planta , ARN Interferente Pequeño/genética , Metilación de ADN/genética , Procesamiento Proteico-Postraduccional , ReproducciónRESUMEN
Eukaryotes must balance the need for gene transcription by RNA polymerase II (Pol II) against the danger of mutations caused by transposable element (TE) proliferation. In plants, these gene expression and TE silencing activities are divided between different RNA polymerases. Specifically, RNA polymerase IV (Pol IV), which evolved from Pol II, transcribes TEs to generate small interfering RNAs (siRNAs) that guide DNA methylation and block TE transcription by Pol II. While the Pol IV complex is recruited to TEs via SNF2-like CLASSY (CLSY) proteins, how Pol IV partners with the CLSYs remains unknown. Here we identified a conserved CYC-YPMF motif that is specific to Pol IV and is positioned on the complex exterior. Furthermore, we found that this motif is essential for the co-purification of all four CLSYs with Pol IV, but that only one CLSY is present in any given Pol IV complex. These findings support a "one CLSY per Pol IV" model where the CYC-YPMF motif acts as a CLSY-docking site. Indeed, mutations in and around this motif phenocopy pol iv null mutants. Together, these findings provide structural and functional insights into a critical protein feature that distinguishes Pol IV from other RNA polymerases, allowing it to promote genome stability by targeting TEs for silencing.
RESUMEN
Oncogene amplification is a major driver of cancer pathogenesis. Breakage fusion bridge (BFB) cycles, like extrachromosomal DNA (ecDNA), can lead to high copy numbers of oncogenes, but their impact on intratumoral heterogeneity, treatment response, and patient survival are not well understood due to difficulty in detecting them by DNA sequencing. We describe a novel algorithm that detects and reconstructs BFB amplifications using optical genome maps (OGMs), called OM2BFB. OM2BFB showed high precision (>93%) and recall (92%) in detecting BFB amplifications in cancer cell lines, PDX models and primary tumors. OM-based comparisons demonstrated that short-read BFB detection using our AmpliconSuite (AS) toolkit also achieved high precision, albeit with reduced sensitivity. We detected 371 BFB events using whole genome sequences from 2,557 primary tumors and cancer lines. BFB amplifications were preferentially found in cervical, head and neck, lung, and esophageal cancers, but rarely in brain cancers. BFB amplified genes show lower variance of gene expression, with fewer options for regulatory rewiring relative to ecDNA amplified genes. BFB positive (BFB (+)) tumors showed reduced heterogeneity of amplicon structures, and delayed onset of resistance, relative to ecDNA(+) tumors. EcDNA and BFB amplifications represent contrasting mechanisms to increase the copy numbers of oncogene with markedly different characteristics that suggest different routes for intervention.
RESUMEN
DNA methylation shapes the epigenetic landscape of the genome, plays critical roles in regulating gene expression, and ensures transposon silencing. As is evidenced by the numerous defects associated with aberrant DNA methylation landscapes, establishing proper tissue-specific methylation patterns is critical. Yet, how such differences arise remains a largely open question in both plants and animals. Here we demonstrate that CLASSY1-4 (CLSY1-4), four locus-specific regulators of DNA methylation, also control tissue-specific methylation patterns, with the most striking pattern observed in ovules where CLSY3 and CLSY4 control DNA methylation at loci with a highly conserved DNA motif. On a more global scale, we demonstrate that specific clsy mutants are sufficient to shift the epigenetic landscape between tissues. Together, these findings reveal substantial epigenetic diversity between tissues and assign these changes to specific CLSY proteins, elucidating how locus-specific targeting combined with tissue-specific expression enables the CLSYs to generate epigenetic diversity during plant development.
Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Animales , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN de Plantas/genética , Epigénesis Genética , Silenciador del Gen , Genoma de Planta , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Plantas/metabolismo , ARN Interferente PequeñoRESUMEN
Extrachromosomal DNA (ecDNA) is a common mode of oncogene amplification but is challenging to analyze. Here, we adapt CRISPR-CATCH, in vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA, previously developed for bacterial chromosome segments, to isolate megabase-sized human ecDNAs. We demonstrate strong enrichment of ecDNA molecules containing EGFR, FGFR2 and MYC from human cancer cells and NRAS ecDNA from human metastatic melanoma with acquired therapeutic resistance. Targeted enrichment of ecDNA versus chromosomal DNA enabled phasing of genetic variants, identified the presence of an EGFRvIII mutation exclusively on ecDNAs and supported an excision model of ecDNA genesis in a glioblastoma model. CRISPR-CATCH followed by nanopore sequencing enabled single-molecule ecDNA methylation profiling and revealed hypomethylation of the EGFR promoter on ecDNAs. We distinguished heterogeneous ecDNA species within the same sample by size and sequence with base-pair resolution and discovered functionally specialized ecDNAs that amplify select enhancers or oncogene-coding sequences.
Asunto(s)
Glioblastoma , Neoplasias , Humanos , Oncogenes , ADN/genética , Neoplasias/genética , Neoplasias/patología , Glioblastoma/genética , Receptores ErbB/genéticaRESUMEN
De novo DNA methylation and the maintenance of DNA methylation in asymmetrical sequence contexts is catalyzed by homologous proteins in plants (DRM2) and animals (DNMT3a/b). In plants, targeting of DRM2 depends on small interfering RNAs (siRNAs), although the molecular details are still unclear. Here, we show that two SRA-domain proteins (SUVH9 and SUVH2) are also essential for DRM2-mediated de novo and maintenance DNA methylation in Arabidopsis thaliana. At some loci, SUVH9 and SUVH2 act redundantly, while at other loci only SUVH2 is required, and this locus specificity correlates with the differing DNA-binding affinity of the SRA domains within SUVH9 and SUVH2. Specifically, SUVH9 preferentially binds methylated asymmetric sites, while SUVH2 preferentially binds methylated CG sites. The suvh9 and suvh2 mutations do not eliminate siRNAs, suggesting a role for SUVH9 and SUVH2 late in the RNA-directed DNA methylation pathway. With these new results, it is clear that SRA-domain proteins are involved in each of the three pathways leading to DNA methylation in Arabidopsis.
Asunto(s)
Proteínas de Arabidopsis/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Metiltransferasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilación de ADN , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Metiltransferasas/genética , Plantas Modificadas Genéticamente/metabolismo , Estructura Terciaria de Proteína , ARN Interferente Pequeño/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Trypanosome mitochondrial mRNAs achieve their coding sequences through RNA editing. This process, catalyzed by approximately 20S protein complexes, involves large numbers of uridylate (U) insertions and deletions within mRNA precursors. Here we analyze the role of the essential TbMP42 protein (band VI/KREPA2) by individually examining each step of the U-deletional and U-insertional editing cycles, using reactions in the approximately linear range. We examined control extracts and RNA interference (RNAi) extracts prepared soon after TbMP42 was depleted (when primary effects should be most evident) and three days later (when precedent shows secondary effects can become prominent). This analysis shows TbMP42 is critical for cleavage of editing substrates by both the U-deletional and U-insertional endonucleases. However, on simple substrates that assess cleavage independent of editing features, TbMP42 is similarly required only for the U-deletional endonuclease, indicating TbMP42 affects the two editing endonucleases differently. Supplementing RNAi extract with recombinant TbMP42 partly restores these cleavage activities. Notably, we find that all the other editing steps (the 3'-U-exonuclease [3'-U-exo] and ligation steps of U-deletion and the terminal-U-transferase [TUTase] and ligation steps of U-insertion) remain at control levels upon RNAi induction, and hence are not dependent on TbMP42. This contrasts with an earlier report that TbMP42 is a 3'-U-exo that may act in U-deletion and additionally is critical for the TUTase and/or ligation steps of U-insertion, observations our data suggest reflect indirect effects of TbMP42 depletion. Thus, trypanosomes require TbMP42 for both endonucleolytic cleavage steps of RNA editing, but not for any of the subsequent steps of the editing cycles.
Asunto(s)
Endorribonucleasas/metabolismo , Proteínas Protozoarias/fisiología , Edición de ARN , ARN/metabolismo , Ribonucleoproteínas/fisiología , Trypanosoma brucei brucei/genética , Animales , Extractos Celulares/química , Línea Celular , Endorribonucleasas/genética , Mutagénesis Insercional , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , ARN/química , Interferencia de ARN , ARN Mitocondrial , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Eliminación de Secuencia , Trypanosoma brucei brucei/enzimologíaRESUMEN
In trypanosome RNA editing, uridylate (U) residues are inserted and deleted at numerous sites within mitochondrial pre-mRNAs by an approximately 20S protein complex that catalyzes cycles of cleavage, U addition/U removal, and ligation. We used RNA interference to deplete TbMP18 (band VII), the last unexamined major protein of our purified editing complex, showing it is essential. TbMP18 is critical for the U-deletional and U-insertional cleavages and for integrity of the approximately 20S editing complex, whose other major components, TbMP99, TbMP81, TbMP63, TbMP52, TbMP48, TbMP42 (bands I through VI), and TbMP57, instead sediment as approximately 10S associations. Additionally, TbMP18 augments editing substrate recognition by the TbMP57 terminal U transferase, possibly aiding the recognition component, TbMP81. The other editing activities and their coordination in precleaved editing remain active in the absence of TbMP18. These data are reminiscent of the data on editing subcomplexes reported by A. Schnaufer et al. (Mol. Cell 12:307-319, 2003) and suggest that these subcomplexes are held together in the approximately 20S complex by TbMP18, as was proposed previously. Our data additionally imply that the proteins are less long-lived in these subcomplexes than they are when held in the complete editing complex. The editing endonucleolytic cleavages being lost when the editing complex becomes fragmented, as upon TbMP18 depletion, should be advantageous to the trypanosome, minimizing broken mRNAs.
Asunto(s)
Proteínas Protozoarias/metabolismo , Edición de ARN , ARN Protozoario/fisiología , Ribonucleoproteínas/metabolismo , Trypanosoma brucei brucei/fisiología , Animales , Proteínas Protozoarias/genética , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/fisiología , ARN Mensajero/genética , ARN Mensajero/fisiología , ARN Mitocondrial , ARN Protozoario/genética , Ribonucleoproteínas/genética , Trypanosoma brucei brucei/genética , Nucleótidos de Uracilo/metabolismoRESUMEN
Oncogene amplification, a major driver of cancer pathogenicity, is often mediated through focal amplification of genomic segments. Recent results implicate extrachromosomal DNA (ecDNA) as the primary driver of focal copy number amplification (fCNA) - enabling gene amplification, rapid tumor evolution, and the rewiring of regulatory circuitry. Resolving an fCNA's structure is a first step in deciphering the mechanisms of its genesis and the fCNA's subsequent biological consequences. We introduce a computational method, AmpliconReconstructor (AR), for integrating optical mapping (OM) of long DNA fragments (>150 kb) with next-generation sequencing (NGS) to resolve fCNAs at single-nucleotide resolution. AR uses an NGS-derived breakpoint graph alongside OM scaffolds to produce high-fidelity reconstructions. After validating its performance through multiple simulation strategies, AR reconstructed fCNAs in seven cancer cell lines to reveal the complex architecture of ecDNA, a breakage-fusion-bridge and other complex rearrangements. By reconstructing the rearrangement signatures associated with an fCNA's generative mechanism, AR enables a more thorough understanding of the origins of fCNAs.
Asunto(s)
Amplificación de Genes , Genómica/métodos , Neoplasias/genética , Oncogenes/genética , Línea Celular Tumoral , Mapeo Cromosómico/métodos , Análisis Citogenético , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , HumanosRESUMEN
A key remit of the NSF-funded "Arabidopsis Research and Training for the 21st Century" (ART-21) Research Coordination Network has been to convene a series of workshops with community members to explore issues concerning research and training in plant biology, including the role that research using Arabidopsis thaliana can play in addressing those issues. A first workshop focused on training needs for bioinformatic and computational approaches in plant biology was held in 2016, and recommendations from that workshop have been published (Friesner et al., Plant Physiology, 175, 2017, 1499). In this white paper, we provide a summary of the discussions and insights arising from the second ART-21 workshop. The second workshop focused on experimental aspects of omics data acquisition and analysis and involved a broad spectrum of participants from academics and industry, ranging from graduate students through post-doctorates, early career and established investigators. Our hope is that this article will inspire beginning and established scientists, corporations, and funding agencies to pursue directions in research and training identified by this workshop, capitalizing on the reference species Arabidopsis thaliana and other valuable plant systems.
RESUMEN
Trypanosome RNA editing is the posttranscriptional insertion and deletion of uridylate (U) residues, often to a massive extent, through cycles of cleavage, U addition or U removal, and ligation. These editing cycles are catalyzed by a complex that we purified to seven major proteins (bands I through VII). Here we analyze the role of band II using extracts of clonal band II RNA interference (RNAi) cell lines prepared by a rapid protocol that enables retention of activities that are lost during traditional extract preparation. By individually scoring each step of editing, we show that band II is critical for all steps of U insertion but is not important for any of the steps of U deletion or for their coordination into the U deletion cycle. This specificity supports the long- standing model that U-insertional and U-deletional activities are separated within the editing complex. Furthermore, by assaying the basic activities of the enzymes that catalyze the steps of U insertion, independent of their action in editing, we show that band II is not any of those enzymes. Rather, band II enables endonuclease action at authentic U insertion sites, terminal-uridylyl-transferase (TUTase) action at cleaved U insertion sites, and U-insertion-specific ligase (band V/IREL) action in the editing complex. Thus, band II facilitates each step of U insertion by providing proper RNA and/or protein recognition. We propose that band II (TbMP81) be called IRER, indicating its essential nature in U-insertional RNA editing recognition.