RESUMEN
The catalytic subunit (Pol) of herpes simplex virus 1 (HSV-1) DNA polymerase has been extensively studied both as a model for other family B DNA polymerases and for its differences from these enzymes as an antiviral target. Among the activities of HSV-1 Pol is an intrinsic RNase H activity that cleaves RNA from RNA-DNA hybrids. There has long been a controversy regarding whether this activity is due to the 3'-to-5' exonuclease of Pol or whether it is a separate activity, possibly acting on 5' RNA termini. To investigate this issue, we compared wild-type HSV-1 Pol and a 3'-to-5' exonuclease-deficient mutant, D368A Pol, for DNA polymerase activity, 3'-to-5' exonuclease activity, and RNase H activity in vitro Additionally, we assessed the RNase H activity using differentially end-labeled templates with 5' or 3' RNA termini. The mutant enzyme was at most modestly impaired for DNA polymerase activity but was drastically impaired for 3'-to-5' exonuclease activity, with no activity detected even at high enzyme-to-DNA substrate ratios. Importantly, the mutant showed no detectable ability to excise RNA with either a 3' or 5' terminus, while the wild-type HSV-1 Pol was able to cleave RNA from the annealed RNA-DNA hairpin template, but only detectably with a 3' RNA terminus in a 3'-to-5' direction and at a rate lower than that of the exonuclease activity. These results suggest that HSV-1 Pol does not have an RNase H separable from its 3'-to-5' exonuclease activity and that this activity prefers DNA degradation over degradation of RNA from RNA-DNA hybrids.IMPORTANCE Herpes simplex virus 1 (HSV-1) is a member of the Herpesviridae family of DNA viruses, several of which cause morbidity and mortality in humans. Although the HSV-1 DNA polymerase has been studied for decades and is a crucial target for antivirals against HSV-1 infection, several of its functions remain to be elucidated. A hypothesis suggesting the existence of a 5'-to-3' RNase H activity intrinsic to this enzyme that could remove RNA primers from Okazaki fragments has been particularly controversial. In this study, we were unable to identify RNase H activity of HSV-1 DNA polymerase on RNA-DNA hybrids with 5' RNA termini. We detected RNase H activity on hybrids with 3' termini, but this was due to the 3'-to-5' exonuclease. Thus, HSV-1 is unlikely to use this method to remove RNA primers during DNA replication but may use pathways similar to those used in eukaryotic Okazaki fragment maturation.
Asunto(s)
Dominio Catalítico , ADN Polimerasa Dirigida por ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Exonucleasas/metabolismo , Herpesvirus Humano 1/enzimología , Ribonucleasa H/metabolismo , Proteínas Virales/metabolismo , ADN , Replicación del ADN , Exonucleasas/genética , Herpesvirus Humano 1/genética , Mutación , ARN , Moldes GenéticosRESUMEN
Herpesviruses, including herpes simplex virus-1, encode and express a DNA polymerase that is required for replication of their dsDNA genomes. The catalytic subunit of this enzyme contains a 3'-5' exonuclease that is involved in proofreading during replication. Although certain mutations that severely impair exonuclease activity are not lethal to the virus, it was reported that virus containing the substitution of alanine for aspartate 368 (D368A), which ablates exonuclease activity, could not be recovered, raising the possibility that this activity is essential for viral replication. To investigate this issue, we produced virus containing this mutation (D368A Pol) using a complementing cell line. D368A Pol virus was unable to form plaques on non-complementing cells. Viral DNA synthesis and polymerase activity were severely inhibited in D368A-infected cells, as was expression of the enzyme, suggesting that effects on polymerase expression rather than on exonuclease activity per se largely explain the lethal phenotype of this mutation.
Asunto(s)
ADN Viral/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Exodesoxirribonucleasas/deficiencia , Herpesvirus Humano 1/enzimología , Herpesvirus Humano 1/crecimiento & desarrollo , Proteínas Mutantes/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Sustitución de Aminoácidos , ADN Polimerasa Dirigida por ADN/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Expresión Génica , Proteínas Mutantes/genética , Mutación Missense , Ensayo de Placa Viral , Proteínas Virales/genéticaRESUMEN
t is the holin gene for coliphage T4, encoding a 218-amino-acid (aa) protein essential for the inner membrane hole formation that initiates lysis and terminates the phage infection cycle. T is predicted to be an integral membrane protein that adopts an N(in)-C(out) topology with a single transmembrane domain (TMD). This holin topology is different from those of the well-studied holins S105 (3 TMDs; N(out)-C(in)) of the coliphage lambda and S68 (2 TMDs; N(in)-C(in)) of the lambdoid phage 21. Here, we used random mutagenesis to construct a library of lysis-defective alleles of t to discern residues and domains important for holin function and for the inhibition of lysis by the T4 antiholin, RI. The results show that mutations in all 3 topological domains (N-terminal cytoplasmic, TMD, and C-terminal periplasmic) can abrogate holin function. Additionally, several lysis-defective alleles in the C-terminal domain are no longer competent in binding RI. Taken together, these results shed light on the roles of the previously uncharacterized N-terminal and C-terminal domains in lysis and its real-time regulation.
Asunto(s)
Bacteriólisis/fisiología , Bacteriófago T4/genética , Bacteriófago T4/fisiología , Escherichia coli/virología , Regulación Viral de la Expresión Génica/fisiología , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Mutación Missense , Proteínas Virales/química , Proteínas Virales/genéticaRESUMEN
The herpes simplex virus 1 DNA polymerase contains a highly conserved structural motif found in most family B polymerases and certain RNA-binding proteins. To investigate its importance within cells, we constructed a mutant virus with substitutions in two residues of the motif and a rescued derivative. The substitutions resulted in severe impairment of plaque formation, yields of infectious virus, and viral DNA synthesis while not meaningfully affecting expression of the mutant enzyme, its co-localization with the viral single-stranded DNA binding protein at intranuclear punctate sites in non-complementing cells or in replication compartments in complementing cells, or viral DNA polymerase activity. Taken together, our results indicate that the RNA binding motif plays a crucial role in herpes simplex virus 1 DNA synthesis through a mechanism separate from effects on polymerase activity, thus identifying a distinct essential function of this motif with implications for hypotheses regarding its biochemical functions.
Asunto(s)
Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , ADN Viral/genética , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Replicación Viral , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Replicación del ADNRESUMEN
After herpesviruses encapsidate their genomes in replication compartments (RCs) within the nuclear interior, capsids migrate to the inner nuclear membrane (INM) for nuclear egress. For human cytomegalovirus (HCMV), capsid migration depends at least in part on nuclear myosin Va. It has been reported for certain herpesviruses that the nucleoplasmic subunit of the viral nuclear egress complex (NEC) is important for this migration. To address whether this is true for HCMV, we used mass spectrometry and multiple other methods to investigate associations among the HCMV NEC nucleoplasmic subunit, UL53, myosin Va, major capsid protein, and/or capsids. We also generated complementing cells to derive and test HCMV mutants null for UL53 or the INM NEC subunit, UL50, for their importance for these associations and, using electron microscopy, for intranuclear distribution of capsids. We found modest associations among the proteins tested, which were enhanced in the absence of UL50. However, we found no role for UL53 in the interactions of myosin Va with capsids or the percentage of capsids outside RC-like inclusions in the nucleus. Thus, UL53 associates somewhat with myosin Va and capsids, but, contrary to reports regarding its homologs in other herpesviruses, is not important for migration of capsids towards the INM.
Asunto(s)
Citomegalovirus , Herpesviridae , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Núcleo Celular , Citomegalovirus/genética , Citomegalovirus/metabolismo , Herpesviridae/metabolismo , Humanos , Miosinas/metabolismo , Membrana Nuclear/metabolismo , Proteínas Virales/metabolismoRESUMEN
Herpesviruses comprise a family of DNA viruses that cause a variety of human and veterinary diseases. During productive infection, mammalian, avian, and reptilian herpesviruses replicate their genomes using a set of conserved viral proteins that include a two subunit DNA polymerase. This enzyme is both a model system for family B DNA polymerases and a target for inhibition by antiviral drugs. This chapter reviews the structure, function, and mechanisms of the polymerase of herpes simplex viruses 1 and 2 (HSV), with only occasional mention of polymerases of other herpesviruses such as human cytomegalovirus (HCMV). Antiviral polymerase inhibitors have had the most success against HSV and HCMV. Detailed structural information regarding HSV DNA polymerase is available, as is much functional information regarding the activities of the catalytic subunit (Pol), which include a DNA polymerization activity that can utilize both DNA and RNA primers, a 3'-5' exonuclease activity, and other activities in DNA synthesis and repair and in pathogenesis, including some remaining to be biochemically defined. Similarly, much is known regarding the accessory subunit, which both resembles and differs from sliding clamp processivity factors such as PCNA, and the interactions of this subunit with Pol and DNA. Both subunits contribute to replication fidelity (or lack thereof). The availability of both pharmacologic and genetic tools not only enabled the initial identification of Pol and the pol gene, but has also helped dissect their functions. Nevertheless, important questions remain for this long-studied enzyme, which is still an attractive target for new drug discovery.
Asunto(s)
ADN Polimerasa Dirigida por ADN , Proteínas Virales , Animales , Citomegalovirus/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Herpesvirus Humano 2/metabolismo , Humanos , Proteínas Virales/genéticaRESUMEN
Nucleoside analogs are mainstays of antiviral therapy. Although resistance to these drugs hinders their use, understanding resistance can illuminate mechanisms of the drugs and their targets. Certain nucleoside analogs, such as ganciclovir (GCV), a leading therapy for human cytomegalovirus (HCMV), contain the equivalent of a 3'-hydoxyl moiety, yet their triphosphates can terminate genome synthesis (nonobligate chain termination). For ganciclovir, chain termination is delayed until incorporation of the subsequent nucleotide, after which viral polymerase idling (repeated addition and removal of incorporated nucleotides) prevents extension. Here, we investigated how an alanine-to-glycine substitution at residue 987 (A987G), in conserved motif V in the thumb subdomain of the catalytic subunit (Pol) of HCMV DNA polymerase, affects polymerase function to overcome delayed chain termination and confer ganciclovir resistance. Steady-state enzyme kinetic studies revealed no effects of this substitution on incorporation of ganciclovir-triphosphate into DNA that could explain resistance. We also found no effects of the substitution on Pol's exonuclease activity, and the mutant enzyme still exhibited idling after incorporation of GCV and the subsequent nucleotide. However, despite extending normal DNA primers similarly to wild-type enzyme, A987G Pol more rapidly extended ganciclovir-containing DNA primers, thereby overcoming chain termination. The mutant Pol also more rapidly extended RNA primers, a previously unreported activity for HCMV Pol. Structural analysis of related Pols bound to primer-templates provides a rationale for these results. These studies uncover a new drug resistance mechanism, potentially applicable to other nonobligate chain-terminating nucleoside analogs, and shed light on polymerase functions.IMPORTANCE While resistance to antiviral drugs can hinder their clinical use, understanding resistance mechanisms can illuminate how these drugs and their targets act. We studied a substitution in the human cytomegalovirus (HCMV) DNA polymerase that confers resistance to a leading anti-HCMV drug, ganciclovir. Ganciclovir is a nucleoside analog that terminates DNA replication after its triphosphate and the subsequent nucleotide are incorporated. We found that the substitution studied here results in an increased rate of extension of drug-containing DNA primers, thereby overcoming termination, which is a new mechanism of drug resistance. The substitution also induces more rapid extension of RNA primers, a function that had not previously been reported for HCMV polymerase. Thus, these results provide a novel resistance mechanism with potential implications for related nucleoside analogs that act against established and emerging viruses, and shed light on DNA polymerase functions.
Asunto(s)
Antivirales/farmacología , Citomegalovirus/efectos de los fármacos , Cartilla de ADN/genética , Farmacorresistencia Viral/genética , Nucleósidos/farmacología , Sustitución de Aminoácidos , Citomegalovirus/enzimología , Citomegalovirus/genética , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , CinéticaRESUMEN
UNLABELLED: Herpesviruses, which include important pathogens, remodel the host cell nucleus to facilitate infection. This remodeling includes the formation of structures called replication compartments (RCs) in which herpesviruses replicate their DNA. During infection with the betaherpesvirus, human cytomegalovirus (HCMV), viral DNA synthesis occurs at the periphery of RCs within the nuclear interior, after which assembled capsids must reach the inner nuclear membrane (INM) for translocation to the cytoplasm (nuclear egress). The processes that facilitate movement of HCMV capsids to the INM during nuclear egress are unknown. Although an actin-based mechanism of alphaherpesvirus capsid trafficking to the INM has been proposed, it is controversial. Here, using a fluorescently-tagged, nucleus-localized actin-binding peptide, we show that HCMV, but not herpes simplex virus 1, strongly induced nuclear actin filaments (F-actin) in human fibroblasts. Based on studies using UV inactivation and inhibitors, this induction depended on viral gene expression. Interestingly, by 24 h postinfection, nuclear F-actin formed thicker structures that appeared by super-resolution microscopy to be bundles of filaments. Later in infection, nuclear F-actin primarily localized along the RC periphery and between the RC periphery and the nuclear rim. Importantly, a drug that depolymerized nuclear F-actin caused defects in production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization near the nuclear rim, without decreasing capsid accumulation in the nucleus. Thus, our results suggest that for at least one herpesvirus, nuclear F-actin promotes capsid movement to the nuclear periphery and nuclear egress. We discuss our results in terms of competing models for these processes. IMPORTANCE: The mechanisms underlying herpesvirus nuclear egress have not been fully determined. In particular, how newly assembled capsids move to the inner nuclear membrane for envelopment is uncertain and controversial. In this study, we show that HCMV, an important human pathogen, induces actin filaments in the nuclei of infected cells and that an inhibitor of nuclear F-actin impairs nuclear egress and capsid localization toward the nuclear periphery. Herpesviruses are widespread pathogens that cause or contribute to an array of human diseases. A better understanding of how herpesvirus capsids traffic in the nucleus may uncover novel targets for antiviral intervention and elucidate aspects of the nuclear cytoskeleton, about which little is known.