Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 81(17): 3509-3525.e5, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34320406

RESUMEN

Nuclear chromosomes transcribe far more RNA than required to encode protein. Here we investigate whether non-coding RNA broadly contributes to cytological-scale chromosome territory architecture. We develop a procedure that depletes soluble proteins, chromatin, and most nuclear RNA from the nucleus but does not delocalize XIST, a known architectural RNA, from an insoluble chromosome "scaffold." RNA-seq analysis reveals that most RNA in the nuclear scaffold is repeat-rich, non-coding, and derived predominantly from introns of nascent transcripts. Insoluble, repeat-rich (C0T-1) RNA co-distributes with known scaffold proteins including scaffold attachment factor A (SAF-A), and distribution of these components inversely correlates with chromatin compaction in normal and experimentally manipulated nuclei. We further show that RNA is required for SAF-A to interact with chromatin and for enrichment of structurally embedded "scaffold attachment regions" prevalent in euchromatin. Collectively, the results indicate that long nascent transcripts contribute a dynamic structural role that promotes the open architecture of active chromosome territories.


Asunto(s)
Cromatina/metabolismo , Matriz Nuclear/metabolismo , ARN no Traducido/metabolismo , Animales , Línea Celular , Núcleo Celular/fisiología , Cromatina/genética , Cromosomas/genética , Cromosomas/metabolismo , Eucromatina/metabolismo , Humanos , Ratones , Matriz Nuclear/genética , ARN/genética , ARN/metabolismo , ARN Largo no Codificante/genética , ARN no Traducido/genética , Transcripción Genética/genética
2.
Dev Cell ; 52(3): 294-308.e3, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31978324

RESUMEN

The ability of XIST to dosage compensate a trisomic autosome presents unique experimental opportunities and potentially transformative therapeutic prospects. However, it is currently thought that XIST requires the natural context surrounding pluripotency to initiate chromosome silencing. Here, we demonstrate that XIST RNA induced in differentiated neural cells can trigger chromosome-wide silencing of chromosome 21 in Down syndrome patient-derived cells. Use of this tightly controlled system revealed a deficiency in differentiation of trisomic neural stem cells to neurons, correctible by inducing XIST at different stages of neurogenesis. Single-cell transcriptomics and other analyses strongly implicate elevated Notch signaling due to trisomy 21, thereby promoting neural stem cell cycling that delays terminal differentiation. These findings have significance for illuminating the epigenetic plasticity of cells during development, the understanding of how human trisomy 21 effects Down syndrome neurobiology, and the translational potential of XIST, a unique non-coding RNA.


Asunto(s)
Diferenciación Celular , Síndrome de Down/patología , Silenciador del Gen , Células-Madre Neurales/patología , Neurogénesis , Neuronas/patología , ARN Largo no Codificante/metabolismo , Células Cultivadas , Compensación de Dosificación (Genética) , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , ARN Largo no Codificante/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Inactivación del Cromosoma X
3.
Mol Biol Cell ; 15(1): 197-206, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14617810

RESUMEN

Previous studies have shown that in a given cell type, certain active genes associate with SC-35 domains, nuclear regions rich in RNA metabolic factors and excluded from heterochromatin. This organization is not seen for all active genes; therefore, it is important to determine whether and when this locus-specific organization arises during development and differentiation of specific cell types. Here, we investigate whether gene organization relative to SC-35 domains is cell type specific by following several muscle and nonmuscle genes in human fibroblasts, committed but proliferative myoblasts, and terminally differentiated muscle. Although no change was seen for other loci, two muscle genes (Human beta-cardiac myosin heavy chain and myogenin) became localized to the periphery of an SC-35 domain in terminally differentiated muscle nuclei, but not in proliferative myoblasts or in fibroblasts. There was no apparent change in gene localization relative to either the chromosome territory or the heterochromatic compartment; thus, the gene repositioning seemed to occur specifically with respect to SC-35 domains. This gene relocation adjacent to a prominent SC-35 domain was recapitulated in mouse 3T3 cells induced into myogenesis by introduction of MyoD. Results demonstrate a cell type-specific reorganization of specific developmentally regulated loci relative to large domains of RNA metabolic factors, which may facilitate developmental regulation of genome expression.


Asunto(s)
Núcleo Celular/metabolismo , Desarrollo de Músculos/fisiología , Mioblastos/metabolismo , Miogenina/metabolismo , Miosinas Ventriculares/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Embrión de Pollo , Cromatina/metabolismo , Humanos , Hibridación Fluorescente in Situ , Ratones , Microscopía Fluorescente , Proteína MioD/metabolismo , Células 3T3 NIH , Subunidades de Proteína/metabolismo
4.
Proc Natl Acad Sci U S A ; 103(20): 7688-93, 2006 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-16682630

RESUMEN

We investigated whether genes escape X chromosome inactivation by positioning outside of the territory defined by XIST RNA. Results reveal an unanticipated higher order organization of genes and noncoding sequences. All 15 X-linked genes, regardless of activity, position on the border of the XIST RNA territory, which resides outside of the DAPI-dense Barr body. Although more strictly delineated on the inactive X chromosome (Xi), all genes localized predominantly to the outer rim of the Xi and active X chromosome. This outer rim is decorated only by X chromosome DNA paints and is excluded from both the XIST RNA and dense DAPI staining. The only DNA found well within the Barr body and XIST RNA territory was centromeric and Cot-1 DNA; hence, the core of the X chromosome essentially excludes genes and is composed primarily of noncoding repeat-rich DNA. Moreover, we show that this core of repetitive sequences is expressed throughout the nucleus yet is silenced throughout Xi, providing direct evidence for chromosome-wide regulation of "junk" DNA transcription. Collective results suggest that the Barr body, long presumed to be the physical manifestation of silenced genes, is in fact composed of a core of silenced noncoding DNA. Instead of acting at a local gene level, XIST RNA appears to interact with and silence core architectural elements to effectively condense and shut down the Xi.


Asunto(s)
Cromosomas Humanos X/genética , Silenciador del Gen , Genes Ligados a X , Inactivación del Cromosoma X , Cromatina/genética , Cromatina/metabolismo , Cromosomas Humanos X/ultraestructura , Femenino , Humanos , Hibridación in Situ , ARN Largo no Codificante , ARN no Traducido/genética , Cromatina Sexual/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA