RESUMEN
We have characterized a sulfobetaine stationary phase based on 1.7 µm ethylene-bridged hybrid organic-inorganic particles, which is intended for use in hydrophilic interaction chromatography. The efficiency of a column packed with this material was determined as a function of flow rate, demonstrating a minimum reduced plate height of 2.4. The batch-to-batch reproducibility was assessed using the separation of a mixture of acids, bases, and neutrals. We compared the retention and selectivity of the hybrid sulfobetaine stationary phase to that of several benchmark materials. The hybrid sulfobetaine material gave strong retention for polar neutrals and high selectivity for methyl groups, hydroxy groups, and configurational isomers. Large differences in cation and anion retention were observed among the columns. We characterized the acid and base stability of the hybrid sulfobetaine stationary phase, using accelerated tests at pH 1.3 and 11.0, both at 70°C. The results support a recommended pH range of 2-10. We also investigated the performance of columns packed with this material for metal-sensitive analytes, comparing conventional stainless steel column hardware to hardware that incorporates hybrid surface technology to mitigate interactions with metal surfaces. Compared to the conventional columns, the hybrid surface technology columns showed a greatly improved peak shape.
Asunto(s)
Cromatografía Liquida , Cromatografía Liquida/métodos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Reproducibilidad de los ResultadosRESUMEN
We have characterized Atlantis ethylene-bridged hybrid C18 anion-exchange, a mixed-mode reversed-phase/weak anion-exchange stationary phase designed to give greater retention for anions (e.g., ionized acids) compared to conventional reversed-phase materials. The retention and selectivity of this stationary phase were compared to that of three benchmark materials, using a mixture of six polar compounds that includes an acid, two bases, and three neutrals. The compatibility of the ethylene-bridged hybrid C18 anion-exchange material with 100% aqueous mobile phases was also evaluated. We investigated the batch-to-batch reproducibility of the ethylene-bridged hybrid C18 anion-exchange stationary phase for 27 batches across three different particle sizes (1.7, 2.5, and 5 µm) and found it to be comparable to that of one of the most reproducible C18 stationary phases. We also characterized the acid and base stability of the ethylene-bridged hybrid C18 anion-exchange stationary phase and the results show it to be usable over a wide pH range, from 2 to 10. The extended upper pH limit relative to silica-based reversed-phase/weak anion-exchange materials is enabled by the use of ethylene-bridged hybrid organic/inorganic particles. The improved base stability allows Atlantis ethylene-bridged hybrid C18 anion-exchange to be used with a wider range of mobile phase pH values, opening up a greater range of selectivity options.
RESUMEN
The characterization and evaluation of three novel 5-microm HPLC column packings, prepared using ethyl-bridged hybrid organic/inorganic materials, is described. These highly spherical hybrid particles, which vary in specific surface area (140, 187, and 270 m(2)/g) and average pore diameter (185, 148, and 108 A), were characterized by elemental analysis, SEM, and nitrogen sorption analysis and were chemically modified in a two-step process using octadecyltrichlorosilane and trimethylchlorosilane. The resultant bonded materials had an octadecyl surface concentration of 3.17-3.35 micromol/m(2), which is comparable to the coverage obtained for an identically bonded silica particle (3.44 micromol/m(2)) that had a surface area of 344 m(2)/g. These hybrid materials were shown to have sufficient mechanical strength under conditions normally employed for traditional reversed-phase HPLC applications, using a high-pressure column flow test. The chromatographic properties of the C(18) bonded hybrid phases were compared to a C(18) bonded silica using a variety of neutral and basic analytes under the same mobile-phase conditions. The hybrid phases exhibited similar selectivity to the silica-based column, yet had improved peak tailing factors for the basic analytes. Column retentivity increased with increasing particle surface area. Elevated pH aging studies of these hybrid materials showed dramatic improvement in chemical stability for both bonded and unbonded hybrid materials compared to the C(18) bonded silica phase, as determined by monitoring the loss in column efficiency through 140-h exposure to a pH 10 triethylamine mobile phase at 50 degrees C.