Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 94(30): 10626-10635, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35866879

RESUMEN

Barcoding and pooling cells for processing as a composite sample are critical to minimize technical variability in multiplex technologies. Fluorescent cell barcoding has been established as a standard method for multiplexing in flow cytometry analysis. In parallel, mass-tag barcoding is routinely used to label cells for mass cytometry. Barcode reagents currently used label intracellular proteins in fixed and permeabilized cells and, therefore, are not suitable for studies with live cells in long-term culture prior to analysis. In this study, we report the development of fluorescent palladium-based hybrid-tag nanotrackers to barcode live cells for flow and mass cytometry dual-modal readout. We describe the preparation, physicochemical characterization, efficiency of cell internalization, and durability of these nanotrackers in live cells cultured over time. In addition, we demonstrate their compatibility with standardized cytometry reagents and protocols. Finally, we validated these nanotrackers for drug response assays during a long-term coculture experiment with two barcoded cell lines. This method represents a new and widely applicable advance for fluorescent and mass-tag barcoding that is independent of protein expression levels and can be used to label cells before long-term drug studies.


Asunto(s)
Procesamiento Automatizado de Datos , Colorantes Fluorescentes , Línea Celular , Citometría de Flujo/métodos , Colorantes Fluorescentes/química , Proteómica
2.
Nanoscale ; 13(6): 3500-3511, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33560282

RESUMEN

In this manuscript, we report the development of a versatile, robust, and stable targeting nanocarrier for active delivery. This nanocarrier is based on bifunctionalized polymeric nanoparticles conjugated to a monoclonal antibody that allows for active targeting of either (i) a fluorophore for tracking or (ii) a drug for monitoring specific cell responses. This nanodevice can efficiently discriminate between cells in coculture based on the expression levels of cell surface receptors. As a proof of concept, we have demonstrated efficient delivery using a broadly established cell surface receptor as the target, the epidermal growth factor receptor (EGFR), which is overexpressed in several types of cancers. Additionally, a second validation of this nanodevice was successfully carried out using another cell surface receptor as the target, the cluster of differentiation 147 (CD147). Our results suggest that this versatile nanocarrier can be expanded to other cell receptors and bioactive cargoes, offering remarkable discrimination efficiency between cells with different expression levels of a specific marker. This work supports the ability of nanoplatforms to boost and improve the progress towards personalized medicine.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Línea Celular Tumoral , Técnicas de Cocultivo , Sistemas de Liberación de Medicamentos , Polímeros
3.
Polymers (Basel) ; 12(6)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492910

RESUMEN

Despite the large number of polymeric nanodelivery systems that have been recently developed, there is still room for improvement in terms of therapeutic efficiency. Most reported nanodevices for controlled release are based on drug encapsulation, which can lead to undesired drug leakage with a consequent reduction in efficacy and an increase in systemic toxicity. Herein, we present a strategy for covalent drug conjugation to the nanodevice to overcome this drawback. In particular, we characterize and evaluate an effective therapeutic polymeric PEGylated nanosystem for controlled pH-sensitive drug release on a breast cancer (MDA-MB-231) and two lung cancer (A549 and H520) cell lines. A significant reduction in the required drug dose to reach its half maximal inhibitory concentration (IC50 value) was achieved by conjugation of the drug to the nanoparticles, which leads to an improvement in the therapeutic index by increasing the efficiency. The genotoxic effect of this nanodevice in cancer cells was confirmed by nucleus histone H2AX specific immunostaining. In summary, we successfully characterized and validated a pH responsive therapeutic polymeric nanodevice in vitro for controlled anticancer drug release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA