Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Mater ; 21(8): 864-868, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35618828

RESUMEN

Photoelectrochemical (PEC) devices have been developed for direct solar fuel production but the limited stability of submerged light absorbers can hamper their commercial prospects.1,2 Here, we demonstrate photocathodes with an operational H2 evolution activity over weeks, by integrating a BiOI light absorber into a robust, oxide-based architecture with a graphite paste conductive encapsulant. In this case, the activity towards proton and CO2 reduction is mainly limited by catalyst degradation. We also introduce multiple-pixel devices as an innovative design principle for PEC systems, displaying superior photocurrents, onset biases and stability over corresponding conventional single-pixel devices. Accordingly, PEC tandem devices comprising multiple-pixel BiOI photocathodes and BiVO4 photoanodes can sustain bias-free water splitting for 240 h, while devices with a Cu92In8 alloy catalyst demonstrate unassisted syngas production from CO2.

2.
Biomacromolecules ; 24(11): 4646-4652, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37792488

RESUMEN

Thiol-reactive Michael acceptors are commonly used for the formation of chemically cross-linked hydrogels. In this paper, we address the drawbacks of many Michael acceptors by introducing pyridazinediones as new cross-linking agents. Through the use of pyridazinediones and their mono- or dibrominated analogues, we show that the mechanical strength, swelling ratio, and rate of gelation can all be controlled in a pH-sensitive manner. Moreover, we demonstrate that the degradation of pyridazinedione-gels can be induced by the addition of thiols, thus providing a route to responsive or dynamic gels, and that monobromo-pyridazinedione gels are able to support the proliferation of human cells. We anticipate that our results will provide a valuable and complementary addition to the existing toolkit of cross-linking agents, allowing researchers to tune and rationally design the properties of biomedical hydrogels.


Asunto(s)
Hidrogeles , Compuestos de Sulfhidrilo , Humanos , Hidrogeles/química , Compuestos de Sulfhidrilo/química , Reactivos de Enlaces Cruzados/química
3.
J Phys Chem C Nanomater Interfaces ; 127(1): 660-671, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36660098

RESUMEN

First principles modeling of anatase TiO2 surfaces and their interfacial contacts shows that defect-induced trap states within the band gap arise from intrinsic structural distortions, and these can be corrected by modification with Zr(IV) ions. Experimental testing of these predictions has been undertaken using anatase nanocrystals modified with a range of Zr precursors and characterized using structural and spectroscopic methods. Continuous-wave electron paramagnetic resonance (EPR) spectroscopy revealed that under illumination, nanoparticle-nanoparticle interfacial hole trap states dominate, which are significantly reduced after optimizing the Zr doping. Fabrication of nanoporous films of these materials and charge injection using electrochemical methods shows that Zr doping also leads to improved electron conductivity and mobility in these nanocrystalline systems. The simple methodology described here to reduce the concentration of interfacial defects may have wider application to improving the efficiency of systems incorporating metal oxide powders and films including photocatalysts, photovoltaics, fuel cells, and related energy applications.

4.
ACS Appl Mater Interfaces ; 15(23): 28739-28746, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37253189

RESUMEN

Forming semiconductor heterojunctions is a promising strategy to boost the efficiency of solar-driven photoelectrochemical (PEC) water splitting by accelerating the separation and transport of photogenerated charge carriers via an interfacial electric field. However, there is limited research considering the influence of electrolytes on the band alignment of the heterojunction under PEC conditions. In this work, we use a single crystal NiCo2O4/SrTiO3 (NCO/STO) heterojunction with atomic-precision controlled thickness as a model photoelectrode to study the band structure modulations upon getting in contact with the electrolyte and the correlation with the PEC activity. It is found that the band alignment can be tuned by the control of p-n heterojunction film thickness and regulated by the water redox potential (Eredox). When the Fermi level (EF) of the heterojunction is higher/lower than the Eredox, the band bending at the NCO/STO-electrolyte interface will increase/decrease after contacting with the electrolyte. However, when the band bending width of the NCO layer is thinner than its thickness, the electrolyte will not influence the band alignment at the NCO/STO interface. In addition, PEC characterization results show that the 1 nm NCO/STO heterojunction photoanode exhibits superior water-splitting performance, owing to the optimum band structure of the p-n heterojunction and the shorter charge transfer distance.

5.
Nanoscale ; 14(3): 910-918, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34988567

RESUMEN

Carbon dots (CDs) are an emerging class of photoluminescent material. Their unique optical properties arise from the discrete energy levels in their electronic states, which directly relate to their crystalline and chemical structure. It is expected that when CDs go through structural changes via chemical reduction or thermal annealing, their energy levels will be altered, inducing unique optoelectronic properties such as solid-state photoluminescence (PL). However, the detailed structural evolution and how the optoelectronic characteristics of CDs are affected remain unclear. Therefore, it is of fundamental interest to understand how the structure of CDs prepared by hydrothermal carbonisation (HTC) rearranges from a highly functionalised disordered structure into a more ordered graphitic structure. In this paper, detailed structural characterisation and in situ TEM were conducted to reveal the structural evolution of CDs during the carbonisation process, which have demonstrated a growth in aromatic domains and reduction in oxidation sites. These structural features are correlated with their near-infrared (NIR) solid-state PL properties, which may find a lot of practical applications such as temperature sensing, solid-state display lighting and anti-counterfeit security inks.

6.
Phys Rev Lett ; 107(5): 056101, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21867079

RESUMEN

By using MgO(111) as a model system for polar oxide film growth, we show by first-principles calculations that H acts as a surfactant, i.e., the H changes its position and bonding during the growth process, remaining in the surface region. Continuous presence of H during the growth of MgO(111) film efficiently removes the microscopic dipole moment, thus enabling the growth of perfect fcc-ordered MgO(111) films. These theoretical predictions are confirmed experimentally by molecular beam epitaxy single crystal growth of MgO(111) on SiC(0001).

7.
Nano Lett ; 10(9): 3740-6, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20718401

RESUMEN

Highly aligned one-dimensional (1D) nanorods of the transparent conducting oxide In(2)O(3) have been grown on (110)-oriented Y-stabilized ZrO(2) substrates, whereas growth on (100) and (111) substrates leads respectively to blocklike 3D islands and continuous films. It is shown that the striking influence of substrate orientation on the growth morphology is controlled by differences in energies between the low index surfaces of In(2)O(3) and that spontaneous self-organization is driven by minimization of surface energies.

8.
J Phys Condens Matter ; 33(17)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33530069

RESUMEN

Anti-phase boundaries (APBs) are structural defects which have been shown to be responsible for the anomalous magnetic behavior observed in different nanostructures. Understanding their properties is crucial in order to use them to tune the properties of magnetic materials by growing APBs in a controlled way since their density strongly depends on the synthesis method. In this work we investigate their influence on magnetite (Fe3O4) thin films by considering an atomistic spin model, focussing our study on the role that the exchange interactions play across the APB interface. We conclude that the main atypical features reported experimentally in this material are well described by the model we propose here, confirming the new exchange interactions created in the APB as the responsible for this deviation from bulk properties.

9.
ACS Appl Mater Interfaces ; 12(47): 53446-53453, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33191725

RESUMEN

In2O3 is a wide bandgap oxide semiconductor, which has the potential to be used as an active material for transparent flexible electronics and UV photodetectors. However, the high concentration of unintentional background electrons existing in In2O3 makes it hard to be modulated by the electric field or form p-n heterojunctions with a sufficient band-bending width at the interface. In this work, we report the reduction of the background electrons in In2O3 by Mg doping (Mg-In2O3) and thereby improve the device performance of p-n diodes based on the NiO/Mg-In2O3 heterojunction. In particular, Mg doping compensates the free electrons in In2O3 and reduces the electron concentration from 1.7 × 1019 cm-3 without doping to 1.8 × 1017 cm-3 with 5% Mg doping. Transparent p-n heterojunction diodes were fabricated based on p-type NiO and n-type Mg-In2O3. The device performance was considerably enhanced by Mg doping with a high rectification ratio of 3 × 104 and a remarkable high breakdown voltage of >20 V. High-resolution X-ray photoelectron spectroscopy was used to investigate the interfacial electronic structure between NiO and Mg-In2O3, revealing a type II band alignment with a valence band offset of 1.35 eV and a conduction band offset of 2.15 eV. A large built-in potential of 0.98 eV was found for the undoped In2O3 but decreased to 0.51 eV for 5% Mg doping of In2O3. The NiO/Mg-In2O3 diodes with an improved rectification ratio and wider depletion region provide the possibility of achieving photodetectors with rapid photoresponse.

10.
Sci Rep ; 10(1): 2722, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066752

RESUMEN

Fe3O4 nanoparticles are one of the most promising candidates for biomedical applications such as magnetic hyperthermia and theranostics due to their bio-compatibility, structural stability and good magnetic properties. However, much is unknown about the nanoscale origins of the observed magnetic properties of particles due to the dominance of surface and finite size effects. Here we have developed an atomistic spin model of elongated magnetite nanocrystals to specifically address the role of faceting and elongation on the magnetic shape anisotropy. We find that for faceted particles simple analytical formulae overestimate the magnetic shape anisotropy and that the underlying cubic anisotropy makes a significant contribution to the energy barrier for moderately elongated particles. Our results enable a better estimation of the effective magnetic anisotropy of highly crystalline magnetite nanoparticles and is a step towards quantitative prediction of the heating effects of magnetic nanoparticles.

11.
J Phys Condens Matter ; 30(6): 065801, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29337694

RESUMEN

The depth-resolved chemical structure and magnetic moment of [Formula: see text], thin films grown on Si(1 1 1) have been determined using x-ray and polarized neutron reflectometry. Bulk-like magnetization is retained across the majority of the film, but reduced moments are observed within 45[Formula: see text] of the surface and in a 25[Formula: see text] substrate-interface region. The reduced moment is related to compositional changes due to oxidation and diffusion, which are further quantified by elemental profiling using electron microscopy with electron energy loss spectroscopy. The accuracy of structural and magnetic depth-profiles obtained from simultaneous modeling is discussed using different approaches with different degree of constraints on the parameters. Our approach illustrates the challenges in fitting reflectometry data from these multi-component quaternary Heusler alloy thin films.

12.
Sci Rep ; 8(1): 3425, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467424

RESUMEN

Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3-xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface.

13.
ACS Appl Mater Interfaces ; 9(31): 26549-26555, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28695740

RESUMEN

Understanding the energetics at the interface, including the alignment of valence and conduction bands, built-in potentials, and ionic and electronic reconstructions, is an important challenge in designing oxide interfaces that have controllable multifunctionalities for novel (opto-)electronic devices. In this work, we report detailed investigations on the heterointerface of wide-band-gap p-type NiO and n-type SrTiO3 (STO). We show that despite a large lattice mismatch (∼7%) and dissimilar crystal structure, high-quality NiO and Li-doped NiO (LNO) thin films can be epitaxially grown on STO(001) substrates through a domain-matching epitaxy mechanism. X-ray photoelectron spectroscopy studies indicate that NiO/STO heterojunctions form a type II "staggered" band alignment. In addition, a large built-in potential of up to 0.97 eV was observed at the interface of LNO and Nb-doped STO (NbSTO). The LNO/NbSTO p-n heterojunctions exhibit not only a large rectification ratio of 2 × 103 but also a large ideality factor of 4.3. The NiO/STO p-n heterojunctions have important implications for applications in photocatalysis and photodetectors as the interface provides favorable energetics for facile separation and transport of photogenerated electrons and holes.

14.
Sci Rep ; 7: 45997, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393876

RESUMEN

The structural, chemical, and magnetic properties of magnetite nanoparticles are compared. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. Atomistic magnetic modelling of nanoparticles with and without these defects reveals the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12-14 nm.

15.
Sci Rep ; 6: 29724, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27411576

RESUMEN

Atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy combined with ab initio electronic calculations are used to determine the structure and properties of the Fe3O4(111)/SrTiO3(111) polar interface. The interfacial structure and chemical composition are shown to be atomically sharp and of an octahedral Fe/SrO3 nature. Band alignment across the interface pins the Fermi level in the vicinity of the conduction band of SrTiO3. Density functional theory calculations demonstrate very high spin-polarization of Fe3O4 in the interface vicinity which suggests that this system may be an excellent candidate for spintronic applications.

16.
Sci Rep ; 6: 20943, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876049

RESUMEN

We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains.

17.
J Phys Condens Matter ; 28(39): 395003, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27501822

RESUMEN

By using first-principles calculations we show that the spin-polarization reverses its sign at atomically abrupt interfaces between the half-metallic Co2(Fe,Mn)(Al,Si) and Si(1 1 1). This unfavourable spin-electronic configuration at the Fermi-level can be completely removed by introducing a Si-Co-Si monolayer at the interface. In addition, this interfacial monolayer shifts the Fermi-level from the valence band edge close to the conduction band edge of Si. We show that such a layer is energetically favourable to exist at the interface. This was further confirmed by direct observations of CoSi2 nano-islands at the interface, by employing atomic resolution scanning transmission electron microscopy.

18.
Sci Rep ; 6: 37282, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27869132

RESUMEN

Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors.

19.
Nat Commun ; 5: 5740, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25494005

RESUMEN

The complex and intriguing properties of the ferrimagnetic half metal magnetite (Fe3O4) are of continuing fundamental interest as well as being important for practical applications in spintronics, magnetism, catalysis and medicine. There is considerable speculation concerning the role of the ubiquitous antiphase boundary (APB) defects in magnetite, however, direct information on their structure and properties has remained challenging to obtain. Here we combine predictive first principles modelling with high-resolution transmission electron microscopy to unambiguously determine the three-dimensional structure of APBs in magnetite. We demonstrate that APB defects on the {110} planes are unusually stable and induce antiferromagnetic coupling between adjacent domains providing an explanation for the magnetoresistance and reduced spin polarization often observed. We also demonstrate how the high stability of the {110} APB defects is connected to the existence of a metastable bulk phase of Fe3O4, which could be stabilized by strain in films or nanostructures.

20.
J Phys Condens Matter ; 26(3): 036002, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24351608

RESUMEN

A model of the magnetorefractive effect is developed for metallic oxides which allows the MRE to be used to study the magnetic dependence of their transport and phononic properties. This model is successfully applied to Fe3O4 and compared to experiments on a series of magnetite thin films of varying thickness (10, 18, 37, 64 and 110 nm) deposited on MgO(111) substrates. Reflection spectra were modelled as a function of film thickness, calculated from the Fresnel equations using an Fe3O4 dielectric function consisting of Drude, hopping, phononic and d-s transition conductivity processes. The reflectivity spectra of the different thickness films are reasonably reproduced by the model and reveal that the Fe3O4 18.5 µm phonon peak is shifted to a shorter wavelength in the thin films, approaching the bulk value for t > 110 nm. The MRE spectra are modelled by introducing a magnetic field dependence to the hopping and phononic terms, where previous models have considered the magnetic dependence to be on the Drude term only. In addition, the position of the Fe3O4 18.5 µm phonon peak was also found to shift in energy in the applied magnetic field by 0.05 µm. These results demonstrate the potential for using the MRE technique for probing the underlying magnetoelectronic properties of thin film oxides in a quick and non-destructive way.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA