Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Med Res Rev ; 44(3): 1326-1369, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38229486

RESUMEN

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.


Asunto(s)
Productos Biológicos , Carcinoma de Pulmón de Células no Pequeñas , Enfermedades Pulmonares , Neoplasias Pulmonares , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Enfermedades Pulmonares/tratamiento farmacológico
2.
Molecules ; 29(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675608

RESUMEN

Increased oxidative stress is one of the critical pathologies inducing age-related macular degeneration (AMD), characterized by retinal pigment epithelial (RPE) cell damage and death. The unbalanced acetylation and deacetylation of histones have been implicated in AMD pathogenesis or hydrogen peroxide (H2O2)-induced cell damage. Therefore, strategies aimed at controlling the balance between acetylation and deacetylation may effectively protect RPE cells from oxidative damage. Artemisinin is an antimalarial lactone drug derived from Artemisia annua, with antioxidant activity known to modulate histone acetylation in the brain, but its effect on the retina is unknown. In this study, we aimed to investigate whether Artemisinin exerts a cytoprotective effect on oxidative stress-induced apoptosis in RPE cells by regulating histone acetylation. We hypothesized that Artemisinin confers cytoprotection toward H2O2-induced apoptosis in RPE cells through this mechanism. In the present study, we found that Artemisinin at a sub-clinic dosage of 20 µM inhibited the H2O2-induced cell viability decrease and B-cell lymphoma 2 (Bcl-2) protein level decrease and attenuated the H2O2-induced decrease in the histone H4 lysine (Lys) 8 acetylation [Acetyl-H4 (Lys 8)] level in the retinal RPE cell line D407. As expected, histone deacetylase inhibitor Trichostatin A at the concentration of 250 nM increased the Acetyl-H4 (Lys 8) level in D407 cells and attenuated the H2O2-induced cell viability decrease and apoptosis. Similar findings were obtained using adult RPE (ARPE)19 cells, another human RPE cell line, and primary human RPE cell cultures. In conclusion, these results confirmed our hypothesis and indicated that Artemisinin attenuated H2O2-induced apoptosis in apparent correlation with the increase in the Acetyl-H4 (Lys 8) level, which is associated with gene transcription and cell survival. By modulating histone acetylation, Artemisinin may restore the balance between acetylation and deacetylation and enhance the resistance and survival of RPE cells under oxidative stress. Our study provides novel mechanistic insights into the effect of Artemisinin on histone acetylation and apoptosis in RPE cells and supports the potential application of Artemisinin in the prevention and/or treatment of AMD.


Asunto(s)
Apoptosis , Artemisininas , Supervivencia Celular , Histonas , Peróxido de Hidrógeno , Lisina , Estrés Oxidativo , Epitelio Pigmentado de la Retina , Humanos , Histonas/metabolismo , Apoptosis/efectos de los fármacos , Acetilación/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Artemisininas/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Lisina/metabolismo , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Citoprotección/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo
3.
J Cell Mol Med ; 24(11): 6208-6219, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32347651

RESUMEN

Uveal melanoma (UM) is a highly invasive intraocular malignancy with high mortality. Presently, there is no FDA-approved standard for the treatment of metastatic UM. Pristimerin is a natural quinine methide triterpenoid compound with anti-angiogenic, anti-cancer and anti-inflammatory activities. However, Pristimerin potential cytotoxic effect on UM was poorly investigated. In the present study, we found the migration and invasion of UM-1 cells were inhibited by Pristimerin which also caused a rapid increase of ROS, decreased mitochondrial membrane potential, induced the accumulation of cells in G0/G1 phase, ending with apoptotic cell death. Pristimerin inhibited Akt and FoxO3a phosphorylation and induced nuclear accumulation of FoxO3a in UM-1 cells, increased the expression of pro-apoptotic proteins Bim、p27Kip1 , cleaved caspase-3, PARP and Bax, and decreased the expression of Cyclin D1 and Bcl-2. LY294002 or Akt-siRNA inhibited the PI3K/Akt/FoxO3a pathway and promoted the Pristimerin-induced apoptosis, while Pristimerin effects were partially abolished in FoxO3a knockdown UM-1 cell cultures. Taken together, present results showed that Pristimerin induced apoptotic cell death through inhibition of PI3K/Akt/FoxO3a pathway in UM-1 cells. These findings indicate that Pristimerin may be considered as a potential chemotherapeutic agent for patients with UM.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , Melanoma/metabolismo , Melanoma/patología , Triterpenos Pentacíclicos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Humanos , Invasividad Neoplásica , Triterpenos Pentacíclicos/química , Fosforilación/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Interferente Pequeño/metabolismo , Proteína X Asociada a bcl-2/metabolismo
4.
FASEB J ; : fj201701568R, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856660

RESUMEN

Glioblastoma is an aggressive and invasive brain malignancy with high mortality rates despite current treatment modalities. In this study, we show that a 7-gene signature, previously found to govern the switch of glioblastomas from dormancy to aggressive tumor growth, correlates with improved overall survival of patients with glioblastoma. Using glioblastoma dormancy models, we validated the role of 2 genes from the signature, thrombospondin-1 ( TSP-1) and epidermal growth factor receptor ( EGFR), as regulators of glioblastoma dormancy and explored their therapeutic potential. EGFR up-regulation was reversed using EGFR small interfering RNA polyplex, antibody, or small-molecule inhibitor. The diminished function of TSP-1 was augmented via a peptidomimetic. The combination of EGFR inhibition and TSP-1 restoration led to enhanced therapeutic efficacy in vitro, in 3-dimensional patient-derived spheroids, and in a subcutaneous human glioblastoma model in vivo. Systemic administration of the combination therapy to mice bearing intracranial murine glioblastoma resulted in marginal therapeutic outcomes, probably due to brain delivery challenges, p53 mutation status, and the aggressive nature of the selected cell line. Nevertheless, this study provides a proof of concept for exploiting regulators of tumor dormancy for glioblastoma therapy. This therapeutic strategy can be exploited for future investigations using a variety of therapeutic entities that manipulate the expression of dormancy-associated genes in glioblastoma as well as in other cancer types.-Tiram, G., Ferber, S., Ofek, P., Eldar-Boock, A., Ben-Shushan, D., Yeini, E., Krivitsky, A., Blatt, R., Almog, N., Henkin, J., Amsalem, O., Yavin, E., Cohen, G., Lazarovici, P., Lee, J. S., Ruppin, E., Milyavsky, M., Grossman, R., Ram, Z., Calderón, M., Haag, R., Satchi-Fainaro, R. Reverting the molecular fingerprint of tumor dormancy as a therapeutic strategy for glioblastoma.

5.
Cytotherapy ; 20(2): 245-261, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29274773

RESUMEN

BACKGROUND AIMS: Human umbilical cord blood (HUCB) is an important source of stem cells for therapy of hematopoietic disorders and is a potential therapy for various neurological disorders, including traumatic brain injury (TBI). The expression of nerve growth factor (NGF) and its receptors TrkA, p75NTR and α9ß1 integrin on an HUCB CD45+ pan-hematopoietic subpopulation was investigated in the context of its neurotherapeutic potential after TBI. METHODS: NGF and its receptors were detected on CD45+ cells by reverse transcriptase polymerase chain reaction, flow cytometry analysis and confocal microscopy. CD45+ cells were stimulated by TBI brain extracts, and NGF levels were measured by enzyme-linked immunosorbent assay. TBI mice were divided into six groups for xenogeneic intravenous transplantation, 1 day post-trauma, with 1 × 106 CD45+ cells untreated or treated with the anti-NGF neutralizing antibody K252a, a TrkA antagonist; VLO5, an α9ß1 disintegrin; or negative (vehicle) and positive (NGF) controls. RESULTS: The HUCB CD45+ subpopulation constitutively expresses NGF and its receptors, mainly TrkA and p75NTR and minor levels of α9ß1. In vitro experiments provided evidence that trauma-related mediators from brain extracts of TBI mice induced release of NGF from HUCB CD45+ cell cultures. HUCB CD45+ cells induced a neurotherapeutic effect in TBI mice, abrogated by cell treatment with either anti-NGF antibody or K252a, but not VLO5. CONCLUSIONS: These findings strengthen the role of NGF and its TrkA receptor in the HUCB CD45+ subpopulation's neurotherapeutic effect. The presence of neurotrophin receptors in the HUCB CD45+ pan-hematopoietic subpopulation may explain the neuroprotective effect of cord blood in therapy of a variety of neurological disorders.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Sangre Fetal/citología , Células Madre Hematopoyéticas/citología , Factor de Crecimiento Nervioso/uso terapéutico , Animales , Lesiones Traumáticas del Encéfalo/patología , Quimiocina CCL3/metabolismo , Trasplante de Células Madre Hematopoyéticas , Humanos , Interleucina-10/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Ratones Endogámicos C57BL , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Extractos de Tejidos
6.
Biochim Biophys Acta Gen Subj ; 1861(3): 615-623, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28063984

RESUMEN

BACKGROUND: Peptide and protein toxins are essential tools to dissect and probe the biology of their target receptors. Venoms target vital physiological processes to evoke pain. Snake venoms contain various factors with the ability to evoke, enhance and sustain pain sensation. While a number of venom-derived toxins were shown to directly target TRPV1 channels expressed on somatosensory nerve terminals to evoke pain response, such toxins were yet to be identified in snake venoms. METHODS: We screened Echis coloratus saw-scaled viper venom's protein fractions isolated by reversed phase HPLC for their ability to activate TRPV1 channels. To this end, we employed heterologous systems to analyze TRPV1 and NGF pathways by imaging and electrophysiology, combined with molecular biology, biochemical, and pharmacological tools. RESULTS: We identified TRPV1 activating proteins in the venom of Echis coloratus that produce a channel-dependent increase in intracellular calcium and outwardly rectifying currents in neurons and heterologous systems. Interestingly, channel activation was not mediated by any of its known toxin binding sites. Moreover, although NGF neurotropic activity was detected in this venom, TRPV1 activation was independent of NGF receptors. CONCLUSIONS: Echis coloratus venom contains proteins with the ability to directly activate TRPV1. This activity is independent of the NGF pathway and is not mediated by known TRPV1 toxins' binding sites. GENERAL SIGNIFICANCE: Our results could facilitate the discovery of new toxins targeting TRPV1 to enhance current understanding of this receptor activation mechanism. Furthermore, the findings of this study provide insight into the mechanism through which snakes' venom elicit pain.


Asunto(s)
Proteínas/metabolismo , Canales Catiónicos TRPV/metabolismo , Venenos de Víboras/metabolismo , Viperidae/metabolismo , Animales , Sitios de Unión/fisiología , Calcio/metabolismo , Línea Celular , Células HEK293 , Humanos , Factor de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Toxinas Biológicas/metabolismo
7.
Int J Mol Sci ; 18(10)2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-28937620

RESUMEN

Schizophrenia is a major psychiatric disorder that afflicts about 1% of the world's population, falling into the top 10 medical disorders causing disability. Existing therapeutic strategies have had limited success on cognitive impairment and long-term disability and are burdened by side effects. Although new antipsychotic medications have been launched in the past decades, there has been a general lack of significant innovation. This lack of significant progress in the pharmacotherapy of schizophrenia is a reflection of the complexity and heterogeneity of the disease. To date, many susceptibility genes have been identified to be associated with schizophrenia. DTNBP1 gene, which encodes dysbindin-1, has been linked to schizophrenia in multiple populations. Studies on genetic variations show that DTNBP1 modulate prefrontal brain functions and psychiatric phenotypes. Dysbindin-1 is enriched in the dorsolateral prefrontal cortex and hippocampus, while postmortem brain studies of individuals with schizophrenia show decreased levels of dysbindin-1 mRNA and protein in these brain regions. These studies proposed a strong connection between dysbindin-1 function and the pathogenesis of disease. Dysbindin-1 protein was localized at both pre- and post-synaptic sites, where it regulates neurotransmitter release and receptors signaling. Moreover, dysbindin-1 has also been found to be involved in neuronal development. Reduced expression levels of dysbindin-1 mRNA and protein appear to be common in dysfunctional brain areas of schizophrenic patients. The present review addresses our current knowledge of dysbindin-1 with emphasis on its potential role in the schizophrenia pathology. We propose that dysbindin-1 and its signaling pathways may constitute potential therapeutic targets in the therapy of schizophrenia.


Asunto(s)
Disbindina/metabolismo , Esquizofrenia/etiología , Animales , Disbindina/genética , Humanos , Neuritas/metabolismo , Neurotransmisores/metabolismo , Esquizofrenia/metabolismo
8.
Biochim Biophys Acta ; 1853(2): 422-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25450973

RESUMEN

Mesenchymal stem cells are potent candidates in stroke therapy due to their ability to secrete protective anti-inflammatory cytokines and growth factors. We investigated the neuroprotective effects of human placental mesenchymal-like adherent stromal cells (PLX) using an established ischemic model of nerve growth factor (NGF)-differentiated pheochromocytoma PC12 cells exposed to oxygen and glucose deprivation (OGD) followed by reperfusion. Under optimal conditions, 2 × 105 PLX cells, added in a trans-well system, conferred 30-60% neuroprotection to PC12 cells subjected to ischemic insult. PC12 cell death, measured by LDH release, was reduced by PLX cells or by conditioned medium derived from PLX cells exposed to ischemia, suggesting the active release of factorial components. Since neuroprotection is a prominent function of the cytokine IL-6 and the angiogenic factor VEGF165, we measured their secretion using selective ELISA of the cells under ischemic or normoxic conditions. IL-6 and VEGF165 secretion by co-culture of PC12 and PLX cells was significantly higher under ischemic compared to normoxic conditions. Exogenous supplementation of 10 ng/ml each of IL-6 and VEGF165 to insulted PC12 cells conferred neuroprotection, reminiscent of the neuroprotective effect of PLX cells or their conditioned medium. Growth factors as well as co-culture conditioned medium effects were reduced by 70% and 20% upon pretreatment with 240 ng/ml Semaxanib (anti VEGF165) and/or 400 ng/ml neutralizing anti IL-6 antibody, respectively. Therefore, PLX-induced neuroprotection in ischemic PC12 cells may be partially explained by IL-6 and VEGF165 secretion. These findings may also account for the therapeutic effects seen in clinical trials after treatment with these cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Interleucina-6/metabolismo , Isquemia/patología , Células Madre Mesenquimatosas/citología , Factores de Crecimiento Nervioso/farmacología , Fármacos Neuroprotectores/metabolismo , Placenta/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Adhesión Celular/efectos de los fármacos , Recuento de Células , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Óxidos N-Cíclicos/farmacología , Femenino , Humanos , Indoles/farmacología , L-Lactato Deshidrogenasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Ratones , Células PC12 , Embarazo , Pirroles/farmacología , Ratas , Marcadores de Spin
9.
Biochim Biophys Acta ; 1850(6): 1169-79, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25665484

RESUMEN

BACKGROUND: Cysteine-rich secretory protein (CRISP) is present in majority of vertebrate including human. The physiological role of this protein is not characterized. We report that a CRISP isolated from Echis carinatus sochureki venom (ES-CRISP) inhibits angiogenesis. METHODS: The anti-angiogenic activity of purified ES-CRISP from snake venom was investigated in vitro using endothelial cells assays such as proliferation, migration and tube formation in Matrigel, as well as in vivo in quail embryonic CAM system. The modulatory effect of ES-CRISP on the expression of major angiogenesis factors and activation of angiogenesis pathways was tested by qRT-PCR and Western blot. RESULTS: The amino acid sequence of ES-CRISP was found highly similar to other members of this snake venom protein family, and shares over 50% identity with human CRISP-3. ES-CRISP supported adhesion to endothelial cells, although it was also internalized into the cytoplasm in a granule-like manner. It blocked EC proliferation, migration and tube formation in Matrigel. In the embryonic quail CAM system, ES-CRISP abolished neovascularization process induced by exogenous growth factors (bFGF, vpVEGF) and by developing gliomas. CRISP modulates the expression of several factors at the mRNA level, which were characterized as regulators of angiogenesis and blocked activation of MAPK Erk1/2 induced by VEGF. CONCLUSIONS: ES-CRISP was characterized as a negative regulator of the angiogenesis, by direct interaction with endothelial cells. GENERAL SIGNIFICANCE: The presented work may lead to the development of novel angiostatic therapy, as well as contribute to the identification of the physiological relevance of this functionally uncharacterized protein.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Membrana Corioalantoides/irrigación sanguínea , Células Endoteliales/efectos de los fármacos , Glioma/irrigación sanguínea , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Neovascularización Patológica , Neovascularización Fisiológica/efectos de los fármacos , Venenos de Víboras/farmacología , Secuencia de Aminoácidos , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/aislamiento & purificación , Inhibidores de la Angiogénesis/metabolismo , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Glioma/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Codorniz , Transducción de Señal/efectos de los fármacos , Venenos de Víboras/química , Venenos de Víboras/aislamiento & purificación , Venenos de Víboras/metabolismo
10.
Am J Physiol Lung Cell Mol Physiol ; 309(11): L1273-85, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26408553

RESUMEN

There is a clear unmet clinical need for novel biotechnology-based therapeutic approaches to lung repair and/or replacement, such as tissue engineering of whole bioengineered lungs. Recent studies have demonstrated the feasibility of decellularizing the whole organ by removal of all its cellular components, thus leaving behind the extracellular matrix as a complex three-dimensional (3D) biomimetic scaffold. Implantation of decellularized lung scaffolds (DLS), which were recellularized with patient-specific lung (progenitor) cells, is deemed the ultimate alternative to lung transplantation. Preclinical studies demonstrated that, upon implantation in rodent models, bioengineered lungs that were recellularized with airway and vascular cells were capable of gas exchange for up to 14 days. However, the long-term applicability of this concept is thwarted in part by the failure of current approaches to reconstruct a physiologically functional, quiescent endothelium lining the entire vascular tree of reseeded lung scaffolds, as inferred from the occurrence of hemorrhage into the airway compartment and thrombosis in the vasculature in vivo. In this review, we explore the idea that successful whole lung bioengineering will critically depend on 1) preserving and/or reestablishing the integrity of the subendothelial basement membrane, especially of the ultrathin respiratory membrane separating airways and capillaries, during and following decellularization and 2) restoring vascular physiological functionality including the barrier function and quiescence of the endothelial lining following reseeding of the vascular compartment. We posit that physiological reconstitution of the pulmonary vascular tree in its entirety will significantly promote the clinical translation of the next generation of bioengineered whole lungs.


Asunto(s)
Pulmón/irrigación sanguínea , Neovascularización Fisiológica , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Matriz Extracelular/metabolismo , Humanos , Modelos Biológicos
11.
Br Med Bull ; 115(1): 45-56, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26063231

RESUMEN

INTRODUCTION: Mesenchymal stem cells (MSCs) of different biological sources are in Phase 1 clinical trials and are being considered for Phase 2 therapy of lung disorders, and lung (progenitor) cells derived from pluripotent stem cells (SCs) are under development in preclinical animal models. SOURCES OF DATA: PubMed.gov and ClinicalTrials.gov. AREAS OF AGREEMENT: There is consensus about the therapeutic potential of transplanted SCs, mainly MSCs, primarily involves paracrine 'bystander' effects that confer protection of the epithelial and endothelial linings of the lung caused by inflammation and/or fibrosis and lead to increased survival in animal models. Clinical trials of Phase 1 indicate safety and suggest that the efficacy of SC therapy in patients with various lung diseases will require a higher dosage than previously evaluated. AREAS OF CONTROVERSY: A growing interest in the re-epithelialization and re-endothelialization of damaged lung tissue involves the putative pulmonary differentiation of exogenous MSCs. Currently, it is not clear whether or not the observed regeneration of distal airways/vasculature is derived from lung-resident and/or transplanted SCs. GROWING POINTS: Important topics under investigation include optimization of the cell source with a decrease in cell population heterogeneity characterized by defined markers, route of delivery for effective treatment, potential dose and therapeutic protocol of SC application, development of quantitative assays and biomarkers of lung disease and repair, and the potential use of tissue engineered lung. AREAS TIMELY FOR DEVELOPING RESEARCH: Ability of MSCs to differentiate into epithelial cells of the lung, use of autologous induced pluripotent SCs (iPSCs) derived from the patients, complete biochemical characterization of the secretome of SCs used for therapy, and the incorporation of simultaneous and/or subsequent treatment with drugs which also aid in lung repair and regeneration. CAUTIONARY NOTE: Although safety of MSC-based cell therapy was proved in Phase 1, efficacy, long-term survival and preservation of lung respiratory function need to be further evaluated, cautioning against hastily translating SCs therapy from animal models of lung injury to clinical trials of patients with lung disorders.


Asunto(s)
Enfermedades Pulmonares/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Efecto Espectador , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Humanos , Enfermedades Pulmonares/fisiopatología , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Ingeniería de Tejidos/métodos
12.
J Pharmacol Exp Ther ; 350(3): 506-19, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24939421

RESUMEN

Obtustatin and viperistatin, members of the disintegrin protein family, served as lead compounds for the synthesis of linear and cyclic peptides containing the KTS binding motif. The most active linear peptide, a viperistatin analog, indicated the importance of Cys(19) and Cys(29), as well as the presence of Arg at position 24 for their biologic activity, and was used as the basic sequence for the synthesis of cyclic peptides. Vimocin (compound 6) and vidapin (compound 10) showed a high potency (IC50 = 0.17 nM) and intermediate efficacy (20 and 40%) in inhibition of adhesion of α1/α2 integrin overexpressor cells to respective collagens. Vimocin was more active in inhibition of the wound healing (53%) and corneal micropocket (17%) vascularization, whereas vidapin was more potent in inhibition of migration in the Matrigel tube formation assay (90%). Both compounds similarly inhibited proliferation (50-90%) of endothelial cells, and angiogenesis induced by vascular endothelial growth factor (80%) and glioma (55%) in the chorioallantoic membrane assay. These peptides were not toxic to endothelial cell cultures and caused no acute toxicity upon intravenous injection in mice, and were stable for 10-30 hours in human serum. The in vitro and in vivo potency of the peptides are consistent with conformational ensembles and "bioactive" space shared by obtustatin and viperistatin. These findings suggest that vimocin and vidapin can serve as dual α1ß1/α2ß1 integrin antagonists in antiangiogenesis and cancer therapy.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Integrina alfa1beta1/antagonistas & inhibidores , Integrina alfa2beta1/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Venenos de Víboras/farmacología , Inhibidores de la Angiogénesis/química , Animales , Bovinos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Integrina alfa1beta1/metabolismo , Integrina alfa2beta1/metabolismo , Masculino , Ratones , Péptidos Cíclicos/química , Codorniz , Ratas , Venenos de Víboras/química
13.
Pharmaceutics ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38931845

RESUMEN

We describe the design, synthesis, and activity of a potent thiourea-bridged backbone cyclic peptidomimetic known as Clarstatin, comprising a 5-amino acid sequence (Q/D)1-(R/K)2-X3-X4-A5-(Gln/Asp)1-(Arg/Lys)2-AA3-AA4-Ala5-based on a motif called "shared epitope (SE)", specifically present in specific alleles of the HLA-DRB1 gene. This SE binds to a particular site within the proline reach domain (P-domain) of the cell surface-calreticulin (CS-CRT). CS-CRT is a multifunctional endoplasmic reticulum (ER) calcium-binding protein that is located on the cell surface of T cells and triggers innate immune signaling, leading to the development of inflammatory autoimmune diseases. The development of Clarstatin was based on the parent peptide W-G-D1-K2-S3-G4-A5- derived from the active region of the SE. Following the design based on the cycloscan method, the synthesis of Clarstatin was performed by the Fmoc solid phase peptide synthesis (SPPS) method, purified by HPLC to 96% homogeneity, and its structure was confirmed by LC-MS. Clarstatin reduced calcium levels in Jurkat lymphocyte cultures, ameliorated uveitis in vivo in the experimental autoimmune uveitis (EAU) mice model, and was safe upon acute toxicity evaluation. These findings identify Clarstatin as a promising lead compound for future drug development as a novel class of therapeutic agents in the therapy of uveitis.

14.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38794120

RESUMEN

To develop peptide drugs targeting integrin receptors, synthetic peptide ligands endowed with well-defined selective binding motifs are necessary. The snake venom KTS-containing disintegrins, which selectively block collagen α1ß1 integrin, were used as lead compounds for the synthesis and structure-activity relationship of a series of linear peptides containing the KTS-pharmacophore and alternating natural amino acids and 3-aminobenzoic acid (MABA). To ensure a better stiffness and metabolic stability, one, two and three MABA residues, were introduced around the KTS pharmacophore motif. Molecular dynamics simulations determined that the solution conformation of MABA peptide 4 is more compact, underwent larger conformational changes until convergence, and spent most of the time in a single cluster. The peptides' binding affinity has been characterized by an enzyme linked immunosorbent assay in which the most potent peptide 4 inhibited with IC50 of 324 ± 8 µM and 550 ± 45 µM the binding of GST-α1-A domain to collagen IV fragment CB3, and the cell adhesion to collagen IV using α1-overexpressor cells, respectively. Docking studies and MM-GBSA calculations confirmed that peptide 4 binds a smaller region of the integrin near the collagen-binding site and penetrated deeper into the binding site near Trp1. Peptide 4 inhibited tube formation by endothelial cell migration in the Matrigel angiogenesis in vitro assay. Peptide 4 was acutely tolerated by mice, showed stability in human serum, decreased tumor volume and angiogenesis, and significantly increased the survival of mice injected with B16 melanoma cells. These findings propose that MABA-peptide 4 can further serve as an α1ß1-integrin antagonist lead compound for further drug optimization in angiogenesis and cancer therapy.

15.
Toxicol Appl Pharmacol ; 269(1): 34-42, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23499869

RESUMEN

Snake venom antagonists of α2ß1 integrin have been identified as members of a C-lectin type family of proteins (CLP). In the present study, we characterized three new CLPs isolated from Echis sochureki venom, which interact with this integrin. These proteins were purified using a combination of gel filtration, ion exchange chromatography and reverse phase HPLC. Sochicetin-A and sochicetin-B potently inhibited adhesion of cells expressing α2ß1 integrin and binding of isolated α2ß1 ectodomain to collagen I, as well as bound to recombinant GST-α2A domain in ELISA, whereas activity of sochicetin-C in these assays was approximately two orders of magnitude lower. Structurally, sochicetin-B and sochicetin-C are typical heterodimeric αß CLPs, whereas sochicetin-A exhibits a trimer of its subunits (αß)3 in the quaternary structure. Immobilized sochicetins supported adhesion of glioma cell lines, LN18 and LBC3, whereas in a soluble form they partially inhibited adhesion of these cells to collagen I. Glioma cells spread very poorly on sochicetin-A, showing no cytoskeleton rearrangement typical for adhesion to collagen I or fibronectin. Adhesion on CLP does not involve focal adhesion elements, such as vinculin. Sochicetin-A also inhibited collagen-induced platelet aggregation, similar to other CLPs' action on the blood coagulation system.


Asunto(s)
Glioma/metabolismo , Integrina alfa2beta1/antagonistas & inhibidores , Inhibidores de Agregación Plaquetaria/farmacología , Proteínas/farmacología , Venenos de Víboras/química , Animales , Adhesión Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Cromatografía de Fase Inversa , Colágeno Tipo I/metabolismo , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Fibronectinas/metabolismo , Glioma/patología , Glutatión Transferasa/metabolismo , Humanos , Integrina alfa2beta1/genética , Integrina alfa2beta1/metabolismo , Isoenzimas/metabolismo , Células K562 , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Inhibidores de Agregación Plaquetaria/metabolismo , Unión Proteica , Conformación Proteica , Proteínas/química , Proteínas/aislamiento & purificación , Proteínas/metabolismo , Relación Estructura-Actividad , Transfección
16.
Biomacromolecules ; 14(5): 1338-48, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23560456

RESUMEN

All blood vessels are lined with a quiescent endothelium, which aids in regulating regular blood flow and avoiding thrombus formation. Current attempts at replacing diseased blood vessels frequently fail due to the intrinsic thrombogenicity of the materials used as vascular grafts. In extending our previous work where we introduced a new candidate scaffolds for vascular grafts electrospun from a blend solution of PLGA, gelatin, and elastin (PGE), this study aimed to evaluate the potential of PGE scaffolds to support nonthrombogenic monolayers of primary isolates of human aortic endothelial cells (HAECs), as assessed by a combination of biochemical, molecular, and bioinformatics-based analyses. After 24 h of culture on 3-D fibrous PGE scaffolds, HAECs formed a confluent, nonthrombogenic, and physiologically competent monolayer, as assessed by tissue factor (TF) gene expression and protein activity assays. The levels of TF mRNA/protein activity in HAECs grown on PGE scaffolds were similar to those on gelatin or collagen IV-coated 2-D surfaces. In addition, bioinformatics-based analysis of a focused microarray containing 84 ECM-related cDNA probes demonstrated that HAECs essentially expressed a histotypic ECM-related "transcriptome" on PGE scaffolds, where cells were more quiescent than cells cultured on 2-D coverslips coated with gelatin (a well-known "inert" substrate for conventional EC culture), but less so than on 2-D PGE films. These data suggest an important role for nanorough substrates (PGE films) in passivating endothelial cells and confirm the crucial effect of substrate composition in this process. Principal component analysis of microarray data on the above substrates (including collagen IV) implied that substrate composition plays a greater role than surface topography in affecting the endothelial ECM-related "transcriptome". Taken together, our findings suggest that electrospun PGE scaffolds are potentially suitable for application in small diameter vascular tissue engineering.


Asunto(s)
Aorta/efectos de los fármacos , Materiales Biocompatibles/farmacología , Células Endoteliales/efectos de los fármacos , Proteínas de la Matriz Extracelular/metabolismo , Expresión Génica/efectos de los fármacos , Tromboplastina/metabolismo , Andamios del Tejido , Aorta/citología , Aorta/metabolismo , Materiales Biocompatibles/química , Biomarcadores/metabolismo , Prótesis Vascular , Colágeno Tipo IV/química , Elastina/química , Técnicas Electroquímicas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteínas de la Matriz Extracelular/genética , Gelatina/química , Perfilación de la Expresión Génica , Humanos , Ácido Láctico/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Cultivo Primario de Células , Tromboplastina/genética , Ingeniería de Tejidos
17.
J Cardiovasc Pharmacol ; 62(3): 270-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23644989

RESUMEN

Nerve growth factor (NGF) has been reported to play an important role in physiological and pathological angiogenesis. Based on these observations, we hypothesized that NGF may induce the formation of functional blood vessels in a hindlimb ischemic rabbit model. Hindlimb ischemia was induced in 34 rabbits bilaterally by endovascular embolization of femoral arteries. On the 7th, 14th, and 20th postembolization days, NGF was injected intramuscularly, in 1 ischemic limb, and vehicle was injected in the contralateral control limb. On the 40th day, newly developed collateral vessels (diameter >500 µm) were quantified by transauricular intraarterial subtraction angiography. Perfusion analysis of an in vivo dynamic computed tomography study was performed to the limbs to investigate the hemodynamic recovery of the distal ischemic tissues. Functional estimation of limb perfusion showed a statistically significant increase of blood flow and blood volume for NGF. However, the increase of the collateral vessels was not detectable angiographically, providing evidence for the existence of a NGF-stimulated capillary angiogenic network but not increase of arteriogenesis. The combination of NGF with either tropomyosin-related kinase type A or vascular endothelial growth factor receptor 2 antagonists abolished the NGF-induced hemodynamic recovery. These findings provide new insights into understanding the involvement of NGF in vascular formation and its applications in therapeutic angiogenesis.


Asunto(s)
Inductores de la Angiogénesis/uso terapéutico , Modelos Animales de Enfermedad , Isquemia/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Factor de Crecimiento Nervioso/uso terapéutico , Receptor trkA/agonistas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/agonistas , Inductores de la Angiogénesis/administración & dosificación , Inductores de la Angiogénesis/antagonistas & inhibidores , Inductores de la Angiogénesis/aislamiento & purificación , Animales , Capilares/diagnóstico por imagen , Capilares/efectos de los fármacos , Capilares/patología , Hemodinámica/efectos de los fármacos , Miembro Posterior , Inyecciones Intramusculares , Isquemia/inducido químicamente , Isquemia/diagnóstico por imagen , Isquemia/patología , Masculino , Ratones , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Neovascularización Fisiológica/efectos de los fármacos , Factor de Crecimiento Nervioso/administración & dosificación , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Factor de Crecimiento Nervioso/aislamiento & purificación , Inhibidores de Proteínas Quinasas/efectos adversos , Conejos , Radiografía , Distribución Aleatoria , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
Int J Mol Sci ; 14(7): 14669-88, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23857061

RESUMEN

In this study, we present the applicability of imaging epidermal growth factor (EGF) receptor levels in preclinical models of COLO205 carcinoma cells in vitro, mice with orthotopic tumors and ex vivo colorectal tumor biopsies, using EGF-labeled with IRDye800CW (EGF-NIR). The near infrared (NIR) bio-imaging of COLO205 cultures indicated specific and selective binding, reflecting EGF receptors levels. In vivo imaging of tumors in mice showed that the highest signal/background ratio between tumor and adjacent tissue was achieved 48 hours post-injection. Dissected colorectal cancer tissues from different patients demonstrated ex vivo specific imaging using the NIR bio-imaging platform of the heterogeneous distributed EGF receptors. Moreover, in the adjacent gastrointestinal tissue of the same patients, which by Western blotting was demonstrated as EGF receptor negative, no labeling with EGF-NIR probe was detected. Present results support the concept of tumor imaging by measuring EGF receptor levels using EGF-NIR probe. This platform is advantageous for EGF receptor bio-imaging of the NCI-60 recommended panel of tumor cell lines including 6-9 colorectal cell lines, since it avoids radioactive probes and is appropriate for use in the clinical setting using NIR technologies in a real-time manner.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Receptores ErbB/metabolismo , Espectroscopía Infrarroja Corta , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Factor de Crecimiento Epidérmico/química , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Humanos , Ratones , Ratones Desnudos , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Trasplante Heterólogo , Imagen de Cuerpo Entero
19.
Artículo en Inglés | MEDLINE | ID: mdl-23314533

RESUMEN

BACKGROUND: Nerve growth factor (NGF) is a neurotrophin that supports the survival and differentiation of sympathetic neurons, and its increased expression after myocardial infarct was correlated with cardiac sympathetic hyperinnervation and arrhythmias. However, it is unclear whether NGF protects the heart during infarct. In this study, we sought to address this issue in rat heart exposed to ischemia/reperfusion injury (IRI). METHODS: NGF was administered intravenously (IV), 15 min before ischemia, at different concentrations in the absence or presence of inhibitors of phosphatidylinositol-3 kinase (PI3K) or nitric oxide synthase (NOS) in different groups of rats (n=6) with left coronary occlusion for 30 min followed by 120-min reperfusion. The area at risk and infarct to risk ratios were determined from sections stained with 1% 2,3,5-triphenylterazolium chloride. RESULTS: NGF treatment at doses of 0.015-15 µg/kg, with an optimal dose of 0.15 µg/kg given IV before ischemia, reduced the infarct size from about 60% at the area of risk to about 25%, indicating cardioprotection by about 60%. The infarct-sparing effects of NGF were partially abolished by the inhibition of PI3K and NOS using wortmannin and N(G)-monomethyl-l-arginine, respectively. CONCLUSIONS: We have demonstrated for the first time that NGF attenuates myocardial infarct damage in an in vivo rat model of myocardial regional IRI. This cardioprotective effect is proposed to be related to the activities of PI3K and NOS. This suggests that NGF has a potential therapeutic role in the treatment of IRI.


Asunto(s)
Daño por Reperfusión Miocárdica/prevención & control , Factor de Crecimiento Nervioso/farmacología , Óxido Nítrico Sintasa/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Androstadienos/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Daño por Reperfusión Miocárdica/patología , Factor de Crecimiento Nervioso/administración & dosificación , Óxido Nítrico Sintasa/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ratas , Ratas Sprague-Dawley , Wortmanina , omega-N-Metilarginina/farmacología
20.
Br Med Bull ; 104: 7-19, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22988303

RESUMEN

INTRODUCTION: Neural stem cells (NSCs) from specific brain areas or developed from progenitors of different sources are of therapeutic potential for neurodegenerative diseases. SOURCES OF DATA: Treatment strategies involve the (i) transplantation of exogenous NSCs; (ii) pharmacological modulations of endogenous NSCs and (iii) modulation of endogenous NSCs via the transplantation of exogenous NSCs. AREAS OF AGREEMENT: There is a consensus about the therapeutic potential of transplanted NSCs. The ability of NSCs to home into areas of central nervous system injury allows their delivery by intravenous injection. There is also a general agreement about the neuroprotective mechanisms of NSCs involving a 'bystander effect'. AREAS OF CONTROVERSY: Individual laboratories may be using phenotypically diverse NSCs, since these cells have been differentiated by a variety of neurotrophins and/or cultured on different ECM proteins, therefore differing in the expression of neuronal markers. GROWING POINTS: Optimization of the dose, delivery route, timing of administration of NSCs, their interactions with the immune system and combination therapies in conjunction with tissue engineered neural prostheses are under investigation. AREAS TIMELY FOR DEVELOPING RESEARCH: In-depth understanding of the biological properties of NSCs, including mechanisms of therapy, safety, efficacy and elimination from the organism. These areas are central for further use in cell therapy. CAUTIONARY NOTE: As long as critical safety and efficacy issues are not resolved, we need to be careful in translating NSC therapy from animal models to patients.


Asunto(s)
Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Enfermedades Neurodegenerativas/terapia , Neurogénesis , Encéfalo/metabolismo , Efecto Espectador , Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/cirugía , Enfermedades del Sistema Nervioso Central/terapia , Humanos , Células-Madre Neurales/fisiología , Trasplante de Células Madre/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA