Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232380

RESUMEN

Previous studies (1) support a role of circadian genes in regulating alcohol intake, and (2) reveal that harmful alcohol use alters circadian rhythms. However, there is minimal knowledge of the effects of chronic alcohol processes on rhythmic circadian gene expression across brain regions important for circadian biology and alcohol intake. Therefore, the present study sought to test the effects of chronic binge-like drinking on diurnal circadian gene expression patterns in the master circadian pacemaker (SCN), the ventral tegmental area (VTA), and the nucleus accumbens (NAc) in High Drinking in the Dark-1 (HDID-1) mice, a unique genetic risk model for drinking to intoxication. Consistent with earlier findings, we found that 8 weeks of binge-like drinking reduced the amplitude of several core circadian clock genes in the NAc and SCN, but not the VTA. To better inform the use of circadian-relevant pharmacotherapies in reducing harmful drinking and ameliorating alcohol's effects on circadian gene expression, we tested whether the casein kinase-1 inhibitor, PF-67046, or the phosphodiesterase type-4 (an upstream regulator of circadian signalling) inhibitor, apremilast, would reduce binge-like intake and mitigate circadian gene suppression. PF-67046 did not reduce intake but did have circadian gene effects. In contrast, apremilast reduced drinking, but had no effect on circadian expression patterns.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Animales , Consumo Excesivo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Caseína Quinasas , Ritmo Circadiano/genética , Etanol/farmacología , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Hidrolasas Diéster Fosfóricas , Talidomida/análogos & derivados
2.
Brain Sci ; 11(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557285

RESUMEN

Alcohol use disorder (AUD) is a devastating psychiatric disorder that has significant wide-reaching effects on individuals and society. Selectively bred mouse lines are an effective means of exploring the genetic and neuronal mechanisms underlying AUD and such studies are translationally important for identifying treatment options. Here, we report on behavioral characterization of two replicate lines of mice that drink to intoxication, the High Drinking in the Dark (HDID)-1 and -2 mice, which have been selectively bred (20+ generations) for the primary phenotype of reaching high blood alcohol levels (BALs) during the drinking in the dark (DID) task, a binge-like drinking assay. Along with their genetically heterogenous progenitor line, Hs/Npt, we tested these mice on: DID and drinking in the light (DIL); temporal drinking patterns; ethanol sensitivity, through loss of righting reflex (LORR); and operant self-administration, including fixed ratio (FR1), fixed ratio 3:1 (FR3), extinction/reinstatement, and progressive ratio (PR). All mice consumed more ethanol during the dark than the light and both HDID lines consumed more ethanol than Hs/Npt during DIL and DID. In the dark, we found that the HDID lines achieved high blood alcohol levels early into a drinking session, suggesting that they exhibit front loading like drinking behavior in the absence of the chronicity usually required for such behavior. Surprisingly, HDID-1 (female and male) and HDID-2 (male) mice were more sensitive to the intoxicating effects of ethanol during the dark (as determined by LORR), while Hs/Npt (female and male) and HDID-2 (female) mice appeared less sensitive. We observed lower HDID-1 ethanol intake compared to either HDID-2 or Hs/Npt during operant ethanol self-administration. There were no genotype differences for either progressive ratio responding, or cue-induced ethanol reinstatement, though the latter is complicated by a lack of extinguished responding behavior. Taken together, these findings suggest that genes affecting one AUD-related behavior do not necessarily affect other AUD-related behaviors. Moreover, these findings highlight that alcohol-related behaviors can also differ between lines selectively bred for the same phenotype, and even between sexes within those same line.

3.
Nat Commun ; 12(1): 1986, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790266

RESUMEN

Many bacteria use the second messenger cyclic diguanylate (c-di-GMP) to control motility, biofilm production and virulence. Here, we identify a thermosensory diguanylate cyclase (TdcA) that modulates temperature-dependent motility, biofilm development and virulence in the opportunistic pathogen Pseudomonas aeruginosa. TdcA synthesizes c-di-GMP with catalytic rates that increase more than a hundred-fold over a ten-degree Celsius change. Analyses using protein chimeras indicate that heat-sensing is mediated by a thermosensitive Per-Arnt-SIM (PAS) domain. TdcA homologs are widespread in sequence databases, and a distantly related, heterologously expressed homolog from the Betaproteobacteria order Gallionellales also displayed thermosensitive diguanylate cyclase activity. We propose, therefore, that thermotransduction is a conserved function of c-di-GMP signaling networks, and that thermosensitive catalysis of a second messenger constitutes a mechanism for thermal sensing in bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/fisiología , Algoritmos , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Cromatografía Liquida , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Espectrometría de Masas , Liasas de Fósforo-Oxígeno/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA