RESUMEN
We present a small and lightweight fully wireless optogenetic headstage capable of optical neural stimulation and electrophysiological recording. The headstage is suitable for conducting experiments with small transgenic rodents, and features two implantable fiber-coupled light-emitting diode (LED) and two electrophysiological recording channels. This system is powered by a small lithium-ion battery and is entirely built using low-cost commercial off-the-shelf components for better flexibility, reduced development time and lower cost. Light stimulation uses customizable stimulation patterns of varying frequency and duty cycle. The optical power that is sourced from the LED is delivered to target light-sensitive neurons using implantable optical fibers, which provide a measured optical power density of 70 mW/mm² at the tip. The headstage is using a novel foldable rigid-flex printed circuit board design, which results into a lightweight and compact device. Recording experiments performed in the cerebral cortex of transgenic ChR2 mice under anesthetized conditions show that the proposed headstage can trigger neuronal activity using optical stimulation, while recording microvolt amplitude electrophysiological signals.
Asunto(s)
Electrofisiología/instrumentación , Optogenética/instrumentación , Telemetría/instrumentación , Tecnología Inalámbrica/instrumentación , Animales , Interfaces Cerebro-Computador , Electrodos Implantados , Diseño de Equipo , Ratones , MicroelectrodosRESUMEN
Recording electrical activity from identified neurons in intact tissue is key to understanding their role in information processing. Recent fluorescence labeling techniques have opened new possibilities to combine electrophysiological recording with optical detection of individual neurons deep in brain tissue. For this purpose we developed dual-core fiberoptics-based microprobes, with an optical core to locally excite and collect fluorescence, and an electrolyte-filled hollow core for extracellular single unit electrophysiology. This design provides microprobes with tips < 10 µm, enabling analyses with single-cell optical resolution. We demonstrate combined electrical and optical detection of single fluorescent neurons in rats and mice. We combined electrical recordings and optical Ca²(+) measurements from single thalamic relay neurons in rats, and achieved detection and activation of single channelrhodopsin-expressing neurons in Thy1::ChR2-YFP transgenic mice. The microprobe expands possibilities for in vivo electrophysiological recording, providing parallel access to single-cell optical monitoring and control.
Asunto(s)
Electrofisiología/instrumentación , Tecnología de Fibra Óptica/instrumentación , Neuronas/fisiología , Dispositivos Ópticos , Potenciales de Acción/fisiología , Animales , Encéfalo , Estimulación Eléctrica , Electrofisiología/métodos , Diseño de Equipo , Proteínas Fluorescentes Verdes , Ratones , RatasRESUMEN
BACKGROUND: Several (online) adaptive radiotherapy procedures are available to maximize healthy tissue sparing in the presence of inter/intrafractional motion during stereotactic body radiotherapy (SBRT) on an MR-linac. The increased treatment complexity and the motion-delivery interplay during these treatments require MR-compatible motion phantoms with time-resolved dosimeters to validate end-to-end workflows. This is not possible with currently available phantoms. PURPOSE: Here, we demonstrate a new commercial hybrid film-scintillator cassette, combining high spatial resolution radiochromic film with four time-resolved plastic scintillator dosimeters (PSDs) in an MRI-compatible motion phantom. METHODS: First, the PSD's performance for consistency, dose linearity, and pulse repetition frequency (PRF) dependence was evaluated using an RW3 solid water slab phantom. We then demonstrated the MRI4D scintillator cassette's suitability for time-resolved and motion-included quality assurance for adapt-to-shape (ATS), trailing, gating, and multileaf collimator (MLC) tracking adaptations on a 1.5 T MR-linac. To do this, the cassette was inserted into the Quasar MRI4D phantom, which we used statically or programmed with artificial and patient-derived motion. Simultaneously with dose measurements, the beam-gating latency was estimated from the time difference between the target entering/leaving the gating window and the beam-on/off times derived from the time-resolved dose measurements. RESULTS: Experiments revealed excellent detector consistency (standard deviation ≤ $\le$ 0.6%), dose linearity (R2 = 1), and only very low PRF dependence ( ≤ $\le$ 0.4%). The dosimetry cassette demonstrated a near-perfect agreement during an ATS workflow between the time-resolved PSD and treatment planning system (TPS) dose (0%-2%). The high spatial resolution film measurements confirmed this with a 1%/1-mm local gamma pass-rate of 90%. When trailing patient-derived prostate motion for a prostate SBRT delivery, the time-resolved cassette measurements demonstrated how trailing mitigated the motion-induced dose reductions from 1%-17% to 1%-2% compared to TPS dose. The cassette's simultaneously measured spatial dose distribution highlighted the dosimetric gain of trailing by improving the 3%/3-mm local gamma pass-rates from 80% to 97% compared to the static dose. Similarly, the cassette demonstrated the benefit of real-time adaptations when compensating patient-derived respiratory motion by showing how the TPS dose was restored from 2%-56% to 0%-12% (gating) and 1%-26% to 1%-7% (MLC tracking) differences. Larger differences are explainable by TPS-PSD coregistration uncertainty combined with a steep dose gradient outside the PTV. The cassette also demonstrated how the spatial dose distributions were drastically improved by the real-time adaptations with 1%/1-mm local gamma pass-rates that were increased from 8 to 79% (gating) and from 35 to 89% (MLC tracking). The cassette-determined beam-gating latency agreed within ≤ $\le$ 12 ms with the ground truth latency measurement. Film and PSD dose agreed well for most cases (differences relative to TPS dose < $<$ 4%), while film-PSD coregistration uncertainty caused relative differences of 5%-8%. CONCLUSIONS: This study demonstrates the excellent suitability of a new commercial hybrid film-scintillator cassette for simultaneous spatial, temporal, and motion-included dosimetry.
Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Movimiento , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Fantasmas de Imagen , Radioterapia de Intensidad Modulada/métodos , Imagen por Resonancia MagnéticaRESUMEN
This paper presents a wireless headstage with real-time spike detection and data compression for combined optogenetics and multichannel electrophysiological recording. The proposed headstage, which is intended to perform both optical stimulation and electrophysiological recordings simultaneously in freely moving transgenic rodents, is entirely built with commercial off-the-shelf components, and includes 32 recording channels and 32 optical stimulation channels. It can detect, compress and transmit full action potential waveforms over 32 channels in parallel and in real time using an embedded digital signal processor based on a low-power field programmable gate array and a Microblaze microprocessor softcore. Such a processor implements a complete digital spike detector featuring a novel adaptive threshold based on a Sigma-delta control loop, and a wavelet data compression module using a new dynamic coefficient re-quantization technique achieving large compression ratios with higher signal quality. Simultaneous optical stimulation and recording have been performed in-vivo using an optrode featuring 8 microelectrodes and 1 implantable fiber coupled to a 465-nm LED, in the somatosensory cortex and the Hippocampus of a transgenic mouse expressing ChannelRhodospin (Thy1::ChR2-YFP line 4) under anesthetized conditions. Experimental results show that the proposed headstage can trigger neuron activity while collecting, detecting and compressing single cell microvolt amplitude activity from multiple channels in parallel while achieving overall compression ratios above 500. This is the first reported high-channel count wireless optogenetic device providing simultaneous optical stimulation and recording. Measured characteristics show that the proposed headstage can achieve up to 100% of true positive detection rate for signal-to-noise ratio (SNR) down to 15 dB, while achieving up to 97.28% at SNR as low as 5 dB. The implemented prototype features a lifespan of up to 105 minutes, and uses a lightweight (2.8 g) and compact [Formula: see text] rigid-flex printed circuit board.
Asunto(s)
Potenciales de Acción , Fenómenos Electrofisiológicos , Optogenética , Tecnología Inalámbrica , Animales , Diseño de Equipo , Ratones Transgénicos , Microelectrodos , Relación Señal-RuidoRESUMEN
This paper presents a miniature Optogenetics headstage for wirelessly stimulating the brain of rodents with an implanted LED while recording electrophysiological data from a two-channel custom readout. The headstage is powered wirelessly using an inductive link, and is built using inexpensive commercial off-the-shelf electronic components, including a RF microcontroller and a printed antenna. This device has the capability to drive one light-stimulating LED and, at the same time, capture and send back neural signals recorded from two microelectrode readout channels. Light stimulation uses flexible patterns that allow for easy tuning of light intensity and stimulation periods. For driving the LED, a low-pass filtered digitally-generated PWM signal is employed for providing a flexible pulse generation method that alleviates the need for D/A converters. The proposed device can be powered wirelessly into an animal chamber using inductive energy transfer, which enables compact, light-weight and cost-effective smart animal research systems. The device dimensions are 15×25×17 mm; it weighs 7.4 grams and has a data transmission range of more than 2 meters. Different types of LEDs with different power consumptions can be used for this system. The power consumption of the system without the LED is 94.52 mW.