Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32533145

RESUMEN

Mapping quantitative trait loci (QTL) in autotetraploid species represents a timely and challenging task. Two papers published by Wu and his colleagues proposed statistical methods for QTL mapping in these evolutionarily and economically important species. In this Letter to the Editor, we present critical comments on the fundamental conceptual errors involved, from both statistical and genetic points of view.


Asunto(s)
Sitios de Carácter Cuantitativo
2.
PLoS Genet ; 10(1): e1004021, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24465217

RESUMEN

Paired sense and antisense (S/AS) genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs) in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3'-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3'-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans) and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the transcriptional collision model, which postulates a clash between simultaneous transcriptional processes occurring on opposite DNA strands.


Asunto(s)
Regiones no Traducidas 3'/genética , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Transcripción Genética , Perfilación de la Expresión Génica , Genoma Fúngico , MicroARNs/genética , Sistemas de Lectura Abierta/genética , ARN sin Sentido/genética
3.
Theor Appl Genet ; 129(9): 1739-57, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27316437

RESUMEN

KEY MESSAGE: This optimized approach provides both a computational tool and a library construction protocol, which can maximize the number of genomic sequence reads that uniformly cover a plant genome and minimize the number of sequence reads representing chloroplast DNA and rRNA genes. One can implement the developed computational tool to feasibly design their own RAD-seq experiment to achieve expected coverage of sequence variant markers for large plant populations using information of the genome sequence and ideally, though not necessarily, information of the sequence polymorphism distribution in the genome. Advent of the next generation sequencing techniques motivates recent interest in developing sequence-based identification and genotyping of genome-wide genetic variants in large populations, with RAD-seq being a typical example. Without taking proper account for the fact that chloroplast and rRNA genes may occupy up to 60 % of the resulting sequence reads, the current RAD-seq design could be very inefficient for plant and crop species. We presented here a generic computational tool to optimize RAD-seq design in any plant species and experimentally tested the optimized design by implementing it to screen for and genotype sequence variants in four plant populations of diploid and autotetraploid Arabidopsis and potato Solanum tuberosum. Sequence data from the optimized RAD-seq experiments shows that the undesirable chloroplast and rRNA contributed sequence reads can be controlled at 3-10 %. Additionally, the optimized RAD-seq method enables pre-design of the required uniformity and density in coverage of the high quality sequence polymorphic markers over the genome of interest and genotyping of large plant or crop populations at a competitive cost in comparison to other mainstream rivals in the literature.


Asunto(s)
ADN de Plantas/genética , Genoma de Planta , Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Arabidopsis/genética , Biología Computacional , ADN de Cloroplastos/genética , ARN de Planta/genética , Análisis de Secuencia de ADN/métodos , Solanum tuberosum/genética
4.
J Bacteriol ; 197(10): 1726-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25733621

RESUMEN

UNLABELLED: A high-throughput phenotypic screen based on a Citrobacter freundii AmpC reporter expressed in Escherichia coli was executed to discover novel inhibitors of bacterial cell wall synthesis, an attractive, well-validated target for antibiotic intervention. Here we describe the discovery and characterization of sulfonyl piperazine and pyrazole compounds, each with novel mechanisms of action. E. coli mutants resistant to these compounds display no cross-resistance to antibiotics of other classes. Resistance to the sulfonyl piperazine maps to LpxH, which catalyzes the fourth step in the synthesis of lipid A, the outer membrane anchor of lipopolysaccharide (LPS). To our knowledge, this compound is the first reported inhibitor of LpxH. Resistance to the pyrazole compound mapped to mutations in either LolC or LolE, components of the essential LolCDE transporter complex, which is required for trafficking of lipoproteins to the outer membrane. Biochemical experiments with E. coli spheroplasts showed that the pyrazole compound is capable of inhibiting the release of lipoproteins from the inner membrane. Both of these compounds have significant promise as chemical probes to further interrogate the potential of these novel cell wall components for antimicrobial therapy. IMPORTANCE: The prevalence of antibacterial resistance, particularly among Gram-negative organisms, signals a need for novel antibacterial agents. A phenotypic screen using AmpC as a sensor for compounds that inhibit processes involved in Gram-negative envelope biogenesis led to the identification of two novel inhibitors with unique mechanisms of action targeting Escherichia coli outer membrane biogenesis. One compound inhibits the transport system for lipoprotein transport to the outer membrane, while the other compound inhibits synthesis of lipopolysaccharide. These results indicate that it is still possible to uncover new compounds with intrinsic antibacterial activity that inhibit novel targets related to the cell envelope, suggesting that the Gram-negative cell envelope still has untapped potential for therapeutic intervention.


Asunto(s)
Antibacterianos/aislamiento & purificación , Pared Celular/efectos de los fármacos , Citrobacter freundii/enzimología , Escherichia coli/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Piperazinas/aislamiento & purificación , Pirazoles/aislamiento & purificación , Antibacterianos/farmacología , Pared Celular/genética , Citrobacter freundii/genética , Farmacorresistencia Bacteriana , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Expresión Génica , Genes Reporteros , Piperazinas/farmacología , Pirazoles/farmacología
5.
BMC Genomics ; 15: 276, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24726045

RESUMEN

BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.


Asunto(s)
Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Poliploidía , Transcriptoma , Triticum/genética , Secuencia de Bases , Etiquetas de Secuencia Expresada , Eliminación de Gen , Perfilación de la Expresión Génica , Biblioteca de Genes , Silenciador del Gen , Genes de Plantas , Haplotipos , Especificidad de Órganos/genética , Sitios de Carácter Cuantitativo , Reproducibilidad de los Resultados , Alineación de Secuencia , Análisis de Secuencia de ARN
6.
BMC Genomics ; 14: 653, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24063258

RESUMEN

BACKGROUND: The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies. RESULTS: We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): 'HSP base Assignment using NGS data through Diploid Similarity' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment. CONCLUSION: We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.


Asunto(s)
Diploidia , Genoma de Planta/genética , Polimorfismo Genético , Poliploidía , Análisis de Secuencia de ADN/métodos , Triticum/genética , Secuencia de Bases , Pan , Cromosomas de las Plantas/genética
7.
Proc Natl Acad Sci U S A ; 107(9): 4270-4, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20142473

RESUMEN

The availability of reliable genetic linkage maps is crucial for functional and evolutionary genomic analyses. Established theory and methods of genetic linkage analysis have made map construction a routine exercise in diploids. However, many evolutionarily, ecologically, and/or agronomically important species are autopolyploids, with autotetraploidy being a typical example. These species undergo much more complicated chromosomal segregation and recombination at meiosis than diploids. In addition, there is evidence of polyploidy-induced and highly dynamic changes in the structure of the genome. These polysomic characteristics indicate the inappropriateness of the theory and methods of linkage analysis in diploids for use in these species and a gap in the theory and methodology of tetraploid map construction. This paper presents a theoretical model and statistical framework for multilocus linkage analysis in autotetraploids for use with dominant and/or codominant DNA molecular markers. The theory and methods incorporate the essential features of allele segregation and recombination under tetrasomic inheritance and the major challenges in statistical modeling and marker data analysis. We validated the method and explored its statistical properties by intensive simulation study and demonstrated its utility by analysis of AFLP and SSR marker data from an outbred autotetraploid potato population.


Asunto(s)
Ligamiento Genético , Cadenas de Markov , Modelos Teóricos , Algoritmos , Evolución Biológica , Marcadores Genéticos , Genotipo , Funciones de Verosimilitud , Ploidias
8.
PLoS Comput Biol ; 5(3): e1000317, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19282978

RESUMEN

It is well known that Affymetrix microarrays are widely used to predict genome-wide gene expression and genome-wide genetic polymorphisms from RNA and genomic DNA hybridization experiments, respectively. It has recently been proposed to integrate the two predictions by use of RNA microarray data only. Although the ability to detect single feature polymorphisms (SFPs) from RNA microarray data has many practical implications for genome study in both sequenced and unsequenced species, it raises enormous challenges for statistical modelling and analysis of microarray gene expression data for this objective. Several methods are proposed to predict SFPs from the gene expression profile. However, their performance is highly vulnerable to differential expression of genes. The SFPs thus predicted are eventually a reflection of differentially expressed genes rather than genuine sequence polymorphisms. To address the problem, we developed a novel statistical method to separate the binding affinity between a transcript and its targeting probe and the parameter measuring transcript abundance from perfect-match hybridization values of Affymetrix gene expression data. We implemented a Bayesian approach to detect SFPs and to genotype a segregating population at the detected SFPs. Based on analysis of three Affymetrix microarray datasets, we demonstrated that the present method confers a significantly improved robustness and accuracy in detecting the SFPs that carry genuine sequence polymorphisms when compared to its rivals in the literature. The method developed in this paper will provide experimental genomicists with advanced analytical tools for appropriate and efficient analysis of their microarray experiments and biostatisticians with insightful interpretation of Affymetrix microarray data.


Asunto(s)
Algoritmos , Mapeo Cromosómico/métodos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Datos de Secuencia Molecular , Polimorfismo Genético
9.
BMC Bioinformatics ; 9: 284, 2008 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-18559105

RESUMEN

BACKGROUND: Affymetrix high density oligonucleotide expression arrays are widely used across all fields of biological research for measuring genome-wide gene expression. An important step in processing oligonucleotide microarray data is to produce a single value for the gene expression level of an RNA transcript using one of a growing number of statistical methods. The challenge for the researcher is to decide on the most appropriate method to use to address a specific biological question with a given dataset. Although several research efforts have focused on assessing performance of a few methods in evaluating gene expression from RNA hybridization experiments with different datasets, the relative merits of the methods currently available in the literature for evaluating genome-wide gene expression from Affymetrix microarray data collected from real biological experiments remain actively debated. RESULTS: The present study reports a comprehensive survey of the performance of all seven commonly used methods in evaluating genome-wide gene expression from a well-designed experiment using Affymetrix microarrays. The experiment profiled eight genetically divergent barley cultivars each with three biological replicates. The dataset so obtained confers a balanced and idealized structure for the present analysis. The methods were evaluated on their sensitivity for detecting differentially expressed genes, reproducibility of expression values across replicates, and consistency in calling differentially expressed genes. The number of genes detected as differentially expressed among methods differed by a factor of two or more at a given false discovery rate (FDR) level. Moreover, we propose the use of genes containing single feature polymorphisms (SFPs) as an empirical test for comparison among methods for the ability to detect true differential gene expression on the basis that SFPs largely correspond to cis-acting expression regulators. The PDNN method demonstrated superiority over all other methods in every comparison, whilst the default Affymetrix MAS5.0 method was clearly inferior. CONCLUSION: A comprehensive assessment of seven commonly used data extraction methods based on an extensive barley Affymetrix gene expression dataset has shown that the PDNN method has superior performance for the detection of differentially expressed genes.


Asunto(s)
Algoritmos , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteoma/metabolismo , Transducción de Señal/fisiología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Mol Biol Evol ; 24(11): 2556-65, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17846103

RESUMEN

Expression divergence of duplicate genes is widely believed to be important for their retention and evolution of new function, although the mechanism that determines their expression divergence remains unclear. We use a genetical genomics approach to explore divergence in genetical control of yeast duplicate genes created by a whole-genome duplication that occurred about 100 MYA and those with a younger duplication age. The analysis reveals that duplicate genes have a significantly higher probability of sharing common genetic control than pairs of singleton genes. The expression quantitative trait loci (eQTLs) have diverged completely for a high proportion of duplicate pairs, whereas a substantially larger proportion of duplicates share common regulatory motifs after 100 Myr of divergent evolution. The similarity in both genetical control and cis motif structure for a duplicate pair is a reflection of its evolutionary age. This study reveals that up to 20% of variation in expression between ancient duplicate gene pairs in the yeast genome can be explained by both cis motif divergence (approximately 8%) and by trans eQTL divergence (approximately 10%). Initially, divergence in all 3 aspects of cis motif structure, trans-genetical control, and expression evolves coordinately with the coding sequence divergence of both young and old duplicate pairs. These findings highlight the importance of divergence in both cis motif structure and trans-genetical control in the diverse set of mechanisms underlying the expression divergence of yeast duplicate genes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Duplicados/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Levaduras/genética , Variación Genética , Genoma Fúngico , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA