Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(27): e2301067120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364130

RESUMEN

RNA therapeutics have the potential to resolve a myriad of genetic diseases. Lipid nanoparticles (LNPs) are among the most successful RNA delivery systems. Expanding their use for the treatment of more genetic diseases hinges on our ability to continuously evolve the design of LNPs with high potency, cellular-specific targeting, and low side effects. Overcoming the difficulty of releasing cargo from endocytosed LNPs remains a significant hurdle. Here, we investigate the fundamental properties of nonviral RNA nanoparticles pertaining to the activation of topological transformations of endosomal membranes and RNA translocation into the cytosol. We show that, beyond composition, LNP fusogenicity can be prescribed by designing LNP nanostructures that lower the energetic cost of fusion and fusion-pore formation with a target membrane. The inclusion of structurally active lipids leads to enhanced LNP endosomal fusion, fast evasion of endosomal entrapment, and efficacious RNA delivery. For example, conserving the lipid make-up, RNA-LNPs having cuboplex nanostructures are significantly more efficacious at endosomal escape than traditional lipoplex constructs.


Asunto(s)
Nanopartículas , ARN , ARN/genética , Lípidos/química , Nanopartículas/química , Endosomas , ARN Interferente Pequeño/genética
2.
Nature ; 559(7715): 517-526, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30046075

RESUMEN

The tropics contain the overwhelming majority of Earth's biodiversity: their terrestrial, freshwater and marine ecosystems hold more than three-quarters of all species, including almost all shallow-water corals and over 90% of terrestrial birds. However, tropical ecosystems are also subject to pervasive and interacting stressors, such as deforestation, overfishing and climate change, and they are set within a socio-economic context that includes growing pressure from an increasingly globalized world, larger and more affluent tropical populations, and weak governance and response capacities. Concerted local, national and international actions are urgently required to prevent a collapse of tropical biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/tendencias , Clima Tropical , Animales , Cambio Climático , Actividades Humanas , Plantas , Factores Socioeconómicos
3.
Soft Matter ; 19(8): 1596-1605, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36752169

RESUMEN

Hybrid phospholipid/block copolymer membranes where polymers and lipids are molecularly mixed or phase-separated into polymer-rich and lipid-rich domains are promising drug delivery materials. Harnessing the chemical diversity of polymers and the biocompatability of lipids is a compelling approach to design the next generation of drug carriers. Here, we report on the development of a microfluidics-based strategy analogous to produce lipid nanoparticles (LNPs) for the nanomanufacturing of multilayered hybrid nanoparticles (HNPs). Using X-ray scattering, Cryo-electron, and polarized microscopy we show that phosphatidylcholine (PC) and PBD-b-PEO (poly(butadiene-block-ethylene oxide)) hybrid membranes can be nanomanufactured by microfluidics into HNPs with dense and multilayered cores which are ideal carriers of low-solubility drugs of the Biopharmaceutical Classification System (BCS) II and IV such as antimalarial DSM265 and Paclitaxel, respectively.


Asunto(s)
Nanopartículas , Polímeros , Polímeros/química , Solubilidad , Microfluídica , Nanopartículas/química , Liposomas , Lípidos/química
4.
Chem Rev ; 121(22): 13996-14030, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34752064

RESUMEN

Hierarchic self-assembly underpins much of the form and function seen in synthetic or biological soft materials. Lipids are paramount examples, building themselves in nature or synthetically in a variety of meso/nanostructures. Synthetic block copolymers capture many of lipid's structural and functional properties. Lipids are typically biocompatible and high molecular weight polymers are mechanically robust and chemically versatile. The development of new materials for applications like controlled drug/gene/protein delivery, biosensors, and artificial cells often requires the combination of lipids and polymers. The emergent composite material, a "polymer-lipid hybrid membrane", displays synergistic properties not seen in pure components. Specific examples include the observation that hybrid membranes undergo lateral phase separation that can correlate in registry across multiple layers into a three-dimensional phase-separated system with enhanced permeability of encapsulated drugs. It is timely to underpin these emergent properties in several categories of hybrid systems ranging from colloidal suspensions to supported hybrid films. In this review, we discuss the form and function of a vast number of polymer-lipid hybrid systems published to date. We rationalize the results to raise new fundamental understanding of hybrid self-assembling soft materials as well as to enable the design of new supramolecular systems and applications.


Asunto(s)
Nanoestructuras , Polímeros , Técnicas de Transferencia de Gen , Lípidos , Nanoestructuras/química , Polímeros/química , Proteínas/química
5.
Eur Phys J E Soft Matter ; 46(8): 67, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37535300

RESUMEN

Bilayer systems comprising lipid mixtures are the most well-studied model of biological membranes. While the plasma membrane of the cell is a single bilayer, many intra- and extra-cellular biomembranes comprise stacks of bilayers. Most bilayer stacks in nature are periodic, maintaining a precise water layer separation between bilayers. That equilibrium water separation is governed by multiple inter-bilayer forces and is highly responsive. Biomembranes re-configure inter-bilayer spacing in response to temperature, composition, or mass transport cues. In synthetic bilayer systems for applications in cosmetics or topical treatments, control of the hydration level is a critical design handle. Herein we investigate a binary lipid system that leverages key inter-bilayer forces leading to unprecedented levels of aqueous swelling while maintaining a coherent multilamellar form. We found that combining cationic lipids with bicontinuous cubic phase-forming lipids (lipids with positive Gaussian modulus), results in the stabilization of multilamellar phases against repulsive steric forces that typically lead to bilayer delamination at high degrees of swelling. Using ultra-small-angle X-ray scattering alongside confocal laser scanning microscopy, we characterized various super-swelled states of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and glycerol monooleate (GMO) lipids, as well as other analogous systems, at varied concentration and molar ratios. Through these experiments we established swelling profiles of various binary lipid systems that were near-linear with decreasing lipid volume fraction, showing maximum swelling with periodicity well above 200 nanometers. Confocal fluorescence micrograph of super-swelled multilamellar structures in 90GMOD sample at 25 mM concentration. Inset plot shows intensity profile of orange line, with pink triangles indicating maxima.


Asunto(s)
Membrana Dobles de Lípidos , Agua , Membrana Dobles de Lípidos/química , Membrana Celular , Agua/química
6.
Biophys J ; 121(6): 886-896, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35176270

RESUMEN

Lower tract respiratory diseases such as pneumonia are pervasive, affecting millions of people every year. The stability of the air/water interface in alveoli and the mechanical performance during the breathing cycle are regulated by the structural and elastic properties of pulmonary surfactant membranes (PSMs). Respiratory dysfunctions and pathologies often result in, or are caused by, impairment of the PSMs. However, a gap remains between our knowledge of the etiology of lung diseases and the fundamental properties of PSMs. For example, bacterial pneumonia in humans and mice has been associated with aberrant levels of cardiolipin, a mitochondrial-specific, highly unsaturated 4-tailed anionic phospholipid, in lung fluid, which likely disrupts the structural and mechanical integrity of PSMs. Specifically, cardiolipin is expected to significantly alter PSM elasticity due to its intrinsic molecular properties favoring membrane folding away from a flat configuration. In this paper, we investigate the structural and mechanical properties of the lipidic components of PSMs using lipid-based models as well as bovine extracts affected by the addition of pathological cardiolipin levels. Specifically, using a combination of optical and atomic force microscopy with a surface force apparatus, we demonstrate that cardiolipin strongly promotes hemifusion of PSMs and that these local membrane contacts propagate at larger scales, resulting in global stiffening of lung membranes.


Asunto(s)
Cardiolipinas , Surfactantes Pulmonares , Animales , Cardiolipinas/química , Bovinos , Humanos , Pulmón , Ratones , Microscopía de Fuerza Atómica , Fosfolípidos/química , Surfactantes Pulmonares/química
7.
Langmuir ; 38(37): 11160-11170, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36053575

RESUMEN

Aqueous polymer colloids known as latexes are widely used in coating applications. Multicomponent latexes comprised of two incompatible polymeric species organized into a core-shell particle morphology are a promising system for self-stratifying coatings that spontaneously partition into multiple layers, thereby yielding complex structured coatings requiring only a single application step. Developing new materials for self-stratifying coatings requires a clear understanding of the thermodynamic and kinetic properties governing phase separation and polymeric species transport. In this work, we study phase separation and self-stratification in polymer films based on multicomponent acrylic (shell) and acrylic-silicone (core) latex particles. Our results show that the molecular weight of the shell polymer and heat aging conditions of the film critically determine the underlying transport phenomena, which ultimately controls phase separation in the film. Unentangled shell polymers result in efficient phase separation within hours with heat aging at reasonable temperatures, whereas entangled shell polymers effectively inhibit phase separation even under extensive heat aging conditions over a period of months due to kinetic limitations. Transmission electron microscopy is used to track morphological changes as a function of thermal aging. Interestingly, our results show that the rheological properties of the latex films are highly sensitive to morphology, and linear shear rheology is used to understand morphological changes. Overall, these results highlight the importance of bulk rheology as a simple and effective tool for understanding changes in morphology in multicomponent latex films.

8.
Soft Matter ; 18(2): 293-303, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34913939

RESUMEN

Vitrimers, dynamic polymer networks with topology conserving exchange reactions, have emerged as a promising platform for sustainable and reprocessable materials. While prior work has documented how dynamic bonds impact stress relaxation and viscosity, their role on crystallization has not been systematically explored. Precise ethylene vitrimers with 8, 10, or 12 methylene units between boronic ester junctions were investigated to understand the impact of bond exchange on crystallization kinetics and morphology. Compared to linear polyethylene which has been heavily investigated for decades, a long induction period for crystallization is seen in the vitrimers ultimately taking weeks in the densest networks. An increase in melting temperatures (Tm) of 25-30 K is observed with isothermal crystallization over 30 days. Both C10 and C12 networks initially form hexagonal crystals, while the C10 network transforms to orthorhombic over the 30 day window as observed with wide angle X-ray scattering (WAXS) and optical microscopy (OM). After 150 days of isothermal crystallization, the three linker lengths led to double diamond (C8), orthorhombic (C10), and hexagonal (C12) crystals indicating the importance of precision on final morphology. Control experiments on a precise, permanent network implicate dynamic bonds as the cause of long-time rearrangements of the crystals, which is critical to understand for applications of semi-crystalline vitrimers. The dynamic bonds also allow the networks to dissolve in water and alcohol-based solvents to monomers, followed by repolymerization while preserving the mechanical properties and melting temperatures.

9.
Proc Natl Acad Sci U S A ; 116(13): 5973-5978, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850519

RESUMEN

Materials that can be switched between low and high thermal conductivity states would advance the control and conversion of thermal energy. Employing in situ time-domain thermoreflectance (TDTR) and in situ synchrotron X-ray scattering, we report a reversible, light-responsive azobenzene polymer that switches between high (0.35 W m-1 K-1) and low thermal conductivity (0.10 W m-1 K-1) states. This threefold change in the thermal conductivity is achieved by modulation of chain alignment resulted from the conformational transition between planar (trans) and nonplanar (cis) azobenzene groups under UV and green light illumination. This conformational transition leads to changes in the π-π stacking geometry and drives the crystal-to-liquid transition, which is fully reversible and occurs on a time scale of tens of seconds at room temperature. This result demonstrates an effective control of the thermophysical properties of polymers by modulating interchain π-π networks by light.

10.
J Am Chem Soc ; 142(19): 8570-8574, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32196323

RESUMEN

Polypeptide micelles are widely used as biocompatible nanoplatforms but often suffer from their poor structural stability. Unimolecular polypeptide micelles can effectively address the structure instability issue, but their synthesis with uniform structure and well-controlled and desired sizes remains challenging. Herein we report the convenient preparation of spherical unimolecular micelles through dendritic polyamine-initiated ultrafast ring-opening polymerization of N-carboxyanhydrides (NCAs). Synthetic polypeptides with exceptionally high molecular weights (up to 85 MDa) and low dispersity (D < 1.05) can be readily obtained, which are the biggest synthetic polypeptides ever reported. The degree of polymerization was controlled in a vast range (25-3200), giving access to nearly monodisperse unimolecular micelles with predictable sizes. Many NCA monomers can be polymerized using this ultrafast polymerization method, which enables the incorporation of various structural and functional moieties into the unimolecular micelles. Because of the simplicity of the synthesis and superior control over the structure, the unimolecular polypeptide micelles may find applications in nanomedicine, supermolecular chemistry, and bionanotechnology.


Asunto(s)
Anhídridos/química , Péptidos/síntesis química , Micelas , Estructura Molecular , Tamaño de la Partícula , Péptidos/química , Polimerizacion , Propiedades de Superficie
11.
Proc Natl Acad Sci U S A ; 114(41): 10834-10839, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28973884

RESUMEN

Lipids self-assemble into diverse supramolecular structures that exhibit thermotropic and/or lyotropic behavior. Lyotropic mesophases, where membranes conform to periodic minimal surfaces dividing two nonpenetrating aqueous subspaces, are arguably one of the most intriguing phases of lipid materials. Traditional 3D bicontinuous cubic lipid materials appear as a polycrystal of varying degrees of order. When exposed to water, the properties of the molecular building blocks of the membrane determine specific swelling limits setting the lattice dimensions at about 15 nm. This limited swelling severely impairs their application as delivery vehicles of large drugs or as matrices for guiding protein crystallization. We report the discovery of self-assembly strategies leading to the emergence of lipid bicontinuous single crystals with unprecedented swelling capacity. The conventional strategy to increase unit cell size is tweaking membrane composition to include charged building blocks, a process to achieve electrostatic-driven swelling. In this paper, we demonstrate that controlling self-assembly external conditions when coupled to membrane composition yields 3D bicontinuous cubic phases that swell up to lattice dimensions of 68 nm. Importantly, and contrary to what is perceived for soft lyotropic materials in general, the self-assembly methodology enables the development of large super-swelled monocrystals. Utilizing small-angle X-ray scattering and cryoelectron microscopy, we underpin three crucial factors dictating the stabilization of super-swelled lipid bicontinuous cubic single crystals: (i) organic solvent drying speed, (ii) membrane charge density, and (iii) polyethylene glycol-conjugated lipids amount.


Asunto(s)
Cristalización/métodos , Lípidos/química , Cristales Líquidos/química
12.
J Environ Manage ; 270: 110879, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32721318

RESUMEN

Brazil contains the largest volume of freshwater of any nation in the world; however, this essential natural resource is threatened by rapid increases in water consumption and water quality degradation, mainly as a result of anthropogenic pressures. Declining water quality has become an increasingly more significant global concern as economic activities and human populations expand and climate change markedly alters hydrological cycles. Changes in land-use/land-cover (LULC) pattern have been recognized as a major driver of water quality degradation, however different LULC types and intensities affect water quality in different ways. In addition, the relationships between LULC and water quality may differ for different spatial and temporal scales. The increase in deforestation, agricultural expansion, and urban sprawl in Brazil highlights the need for water quality protection to ensure immediate human needs and to maintain the quality of water supplies in the long-term. Thus, this manuscript provides an overview of the relationships between LULC and water quality in Brazil, aiming at understanding the effects of different LULC types on water quality, how spatial and temporal scales contribute to these effects, and how such knowledge can improve watershed management and future projections. In general, agriculture and urban areas are the main LULCs responsible for water quality degradation in Brazil. However, although representing a small percentage of the territory, mining has a high impact on water quality. Water quality variables respond differently at different spatial scales, so spatial extent is an important aspect to be considered in studies and management. LULC impacts on water quality also vary seasonally and lag effects mean they take time to occur. Forest restoration can improve water quality and multicriteria evaluation has been applied to identify priority areas for forest restoration and conservation aiming at protecting water quality, but both need further exploration. Watershed modelling has been applied to simulate future impacts of LULC change on water quality, but data availability must be improved to increase the number, locations and duration of studies. Because of the international nature of watersheds and the consistent relationships between land use and water quality in Brazil, we believe our results will also aid water management in other countries.


Asunto(s)
Conservación de los Recursos Naturales , Calidad del Agua , Agricultura , Brasil , Monitoreo del Ambiente , Bosques , Humanos
13.
Langmuir ; 35(36): 11891-11901, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31408350

RESUMEN

We report on the discovery of a new organized lipid-nucleic acid phase upon intercalation of blunt duplexes of short DNA (sDNA) within cationic multilayer fluid membranes. End-to-end interactions between sDNA leads to columnar stacks. At high membrane charge density, with the inter-sDNA column spacing (dsDNA) comparable but larger than the diameter of sDNA, a 2D columnar phase (i.e., a 2D smectic) is found similar to the phase in cationic liposome-DNA complexes with long lambda-phage DNA. Remarkably, with increasing dsDNA as the membrane charge density is lowered, a transition is observed to a 3D columnar phase of stacked sDNA. This occurs even though direct DNA-DNA electrostatic interactions across layers are screened by diffusing cationic lipids near the phosphate groups of sDNA. Softening of the membrane bending rigidity (κ), which further promotes membrane undulations, significantly enhances the 3D columnar phase. These observations are consistent with a model by Schiessel and Aranda-Espinoza where local membrane undulations, due to electrostatically induced membrane wrapping around sDNA columns, phase lock from layer-to-layer, thereby precipitating coherent "crystal-like" undulations coupled to sDNA columns with long-range position and orientation order. The finding that this new phase is stable at large dsDNA and enhanced with decreasing κ is further supportive of the model where the elastic cost of membrane deformation per unit area around sDNA columns (∝ κh2/dsDNA4, h2 = sum of square of amplitudes of the inner and outer monolayer undulations) is strongly reduced relative to the favorable electrostatic attractions of partially wrapped membrane around sDNA columns. The findings have broad implications in the design of membrane-mediated assembly of functional nanoparticles in 3D.


Asunto(s)
ADN/química , Ácidos Grasos Monoinsaturados/química , Fosfatidilcolinas/química , Compuestos de Amonio Cuaternario/química , Liposomas/química , Tamaño de la Partícula , Propiedades de Superficie
14.
Soft Matter ; 15(6): 1269-1277, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30462135

RESUMEN

In this paper we investigate the pseudo-ternary phase diagram of glycerol monooleate (GMO), a cationic lipid (DOTAP - 1,2-dioleoyl-3-trimethylammonium propane), and a "PEGylated" lipid (DOPE-PEG - 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000 kDa]) in excess water. We use small angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (Cryo-EM) to map out a phase diagram in a regime of low DOPE-PEG content (1-5 mol%), which is pertinent for the application of lipid systems as carriers of biomolecular cargo to cells. Pure GMO is known to self-assemble into bicontinuous cubic phases of the gyroid type at low water content and of the diamond type in excess water. These complex structures have numerous advantages reaching beyond drug delivery, e.g. as protein crystallization matrices, but their formulation is challenging as very small contents of guest molecules can shift the phase behavior towards other geometries such as the lamellar phase. In this work, we show that the ternary GMO/DOTAP/DOPE-PEG system allows the stabilization of bicontinuous cubic phases in excess water over a wide composition range. The symmetry of the phase can be tuned by varying the amount of PEGylated lipid, with the primitive type dominating at low DOPE-PEG content (1-3 mol%) and the diamond phase arising at 5 mol% DOPE-PEG. In addition, we found that the diamond phase is virtually non-responsive to electrostatic swelling. In contrast, primitive bicontinuous cubic lattice dimensions swell up in equilibrium to 650 Å with increased cationic lipid content.

15.
Soft Matter ; 15(47): 9609-9613, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31750504

RESUMEN

We report the structural transition of a phosphonium ionic liquid-based microemulsion from the bulk to nanoconfined between atomically flat micas. Upon the nanoconfinement, we observed a firmly surface-adsorbed ionic liquid film that stabilizes the nanoconfined microemulsion. Further confinement (<11 nm) induces rearrangements in the microemulsion culminating into two well-ordered layers with slow dynamics.

16.
Artículo en Inglés | MEDLINE | ID: mdl-31080383

RESUMEN

Amphiphilic in nature, lipids spontaneously self-assemble into a range of nanostructures in the presence of water. Among lipid self-assembled structures, liposomes and supported lipid bilayers have long held scientific interest for their main applications in drug delivery and plasma membrane models, respectively. In contrast, lipid-based multi-layered membranes on solid supports only recently begun drawing scientists' attention. New studies on lipid films show that the stacking of multiple bilayers on a solid support yields interestingly complex features to these systems. Namely, multiple layers exhibit cooperative structural and dynamic behavior. In addition, the materials enable compartmentalization, templating, and enhanced release of several molecules of interest. Importantly, supported lipid phases exhibit long-range periodic nano-scale order and orientation that is tunable in response to a changing environment. Herein, we summarize current and pertinent understanding of lipid-based film research focusing on how unique structural characteristics enable the emergence of new applications in biotechnology including label-free biosensors, macroscale drug delivery, and substrate-mediated gene delivery. Our very recent contributions to lipid-based films, focusing on the structural characterization at the meso, nano, and molecular-scale, using Small-Angle X-ray Scattering, Atomic Force Microscopy, Photothermal Induced Resonance, and Solid-State NMR will be also highlighted.

17.
Small ; 14(17): e1703043, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29611281

RESUMEN

Na-ion cointercalation in the graphite host structure in a glyme-based electrolyte represents a new possibility for using carbon-based materials (CMs) as anodes for Na-ion storage. However, local microstructures and nanoscale morphological features in CMs affect their electrochemical performances; they require intensive studies to achieve high levels of Na-ion storage performances. Here, pyrolytic carbon nanosheets (PCNs) composed of multitudinous graphitic nanocrystals are prepared from renewable bioresources by heating. In particular, PCN-2800 prepared by heating at 2800 °C has a distinctive sp2 carbon bonding nature, crystalline domain size of ≈44.2 Å, and high electrical conductivity of ≈320 S cm-1 , presenting significantly high rate capability at 600 C (60 A g-1 ) and stable cycling behaviors over 40 000 cycles as an anode for Na-ion storage. The results of this study show the unusual graphitization behaviors of a char-type carbon precursor and exceptionally high rate and cycling performances of the resulting graphitic material, PCN-2800, even surpassing those of supercapacitors.

19.
Langmuir ; 34(25): 7561-7574, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29847137

RESUMEN

The hierarchical assembly of lipids, as modulated by composition and environment, plays a significant role in the function of biological membranes and a myriad of diseases. Elevated concentrations of calcium ions and cardiolipin (CL), an anionic tetra-alkyl lipid found in mitochondria and some bacterial cell membranes, have been implicated in pneumonia recently. However, their impact on the physicochemical properties of lipid assemblies in lungs and how it impairs alveoli function is still unknown. We use small- and wide-angle X-ray scattering (S/WAXS) and solid-state nuclear magnetic resonance (ssNMR) to probe the structure and dynamics of lung-mimetic multilamellar bodies (MLBs) in the presence of Ca2+ and CL. We conjecture that CL overexpressed in the hypophase of alveoli strongly affects the structure of lung-lipid bilayers and their stacking in the MLBs. Specifically, S/WAXS data revealed that CL induces significant shrinkage of the water-layer separating the concentric bilayers in multilamellar aggregates. ssNMR measurements indicate that this interbilayer tightening is due to undulation repulsion damping as CL renders the glycerol backbone of the membranes significantly more static. In addition to MLB dehydration, CL promotes intrabilayer phase separation into saturated-rich and unsaturated-rich lipid domains that couple across multiple layers. Expectedly, addition of Ca2+ screens the electrostatic repulsion between negatively charged lung membranes. However, when CL is present, addition of Ca2+ results in an apparent interbilayer expansion likely due to local structural defects. Combining S/WAXS and ssNMR on systems with compositions pertinent to healthy and unhealthy lung membranes, we propose how alteration of the physiochemical properties of MLBs can critically impact the breathing cycle.


Asunto(s)
Membrana Celular/química , Membrana Celular/efectos de los fármacos , Neumonía/fisiopatología , Calcio/farmacología , Cardiolipinas/farmacología , Humanos , Membrana Dobles de Lípidos/química , Pulmón/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Dispersión de Radiación , Rayos X
20.
Analyst ; 143(16): 3808-3813, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-29878001

RESUMEN

Paclitaxel is a powerful drug against restenosis and many forms of cancer. However, its clinical application hinges on the ability to achieve suitable stabilized drug concentrations in an aqueous suspension while hindering drug crystallization. To engineer such formulations, it is imperative to understand paclitaxel's partitioning and crystallization within the carrier matrix. Lipid-polymer hybrid films have been recently shown to accommodate large paclitaxel loads and suppress crystallization. Additionally, such hybrid materials promote synergistic drug release compared to the pure constituents. Here, we leverage the composition sensitive photo-thermal induced resonance (PTIR) technique to study paclitaxel partitioning within hybrid films at the nanoscale. PTIR data reveal that paclitaxel nano-crystals segregate from lipid-only films but are well dispersed in polymer-only films. Remarkably, lipid-polymer hybrid films show enhanced partitioning of paclitaxel at the lipid-polymer phase boundaries, but still stifle crystallization, thus paving the way towards compositional and microstructural engineering of small-drug delivery systems.


Asunto(s)
Sistemas de Liberación de Medicamentos , Lípidos/química , Paclitaxel/química , Polímeros/química , Cristalización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA