Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Allergy Clin Immunol ; 145(4): 1272-1284.e6, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31983527

RESUMEN

BACKGROUND: The World Health Organization estimates that air pollution is responsible for 7 million deaths per annum, with 7% of these attributable to pneumonia. Many of these fatalities have been linked to exposure to high levels of airborne particulates, such as diesel exhaust particles (DEPs). OBJECTIVES: We sought to determine whether exposure to DEPs could promote the progression of asymptomatic nasopharyngeal carriage of Streptococcus pneumoniae to invasive pneumococcal disease. METHODS: We used mouse models and in vitro assays to provide a mechanistic understanding of the link between DEP exposure and pneumococcal disease risk, and we confirmed our findings by using induced sputum macrophages isolated from healthy human volunteers. RESULTS: We demonstrate that inhaled exposure to DEPs disrupts asymptomatic nasopharyngeal carriage of S pneumoniae in mice, leading to dissemination to lungs and blood. Pneumococci are transported from the nasopharynx to the lungs following exposure to DEPs, leading to increased proinflammatory cytokine production, reduced phagocytic function of alveolar macrophages, and consequently, increased pneumococcal loads within the lungs and translocation into blood. These findings were confirmed by using DEP-exposed induced sputum macrophages isolated from healthy volunteers, demonstrating that impaired innate immune mechanisms following DEP exposure are also at play in humans. CONCLUSION: Lung inhaled DEPs increase susceptibility to pneumococcal disease by leading to loss of immunological control of pneumococcal colonisation, increased inflammation, tissue damage, and systemic bacterial dissemination.


Asunto(s)
Pulmón/inmunología , Macrófagos/inmunología , Nasofaringe/patología , Material Particulado/efectos adversos , Neumonía Neumocócica/inmunología , Streptococcus pneumoniae/fisiología , Animales , Bacteriemia , Portador Sano , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nasofaringe/microbiología , Fagocitosis , Neumonía Neumocócica/epidemiología , Riesgo , Emisiones de Vehículos
2.
Int J Pharm ; 655: 123996, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38490404

RESUMEN

The immunomodulatory properties of ß-glucans have sparked interest among various medical fields. As vaccine adjuvants, glucan particles offer additional advantages as antigen delivery systems. This study reported the immunomodulatory properties of glucan particles with different size and chemical composition. The effect of glucan microparticles (GPs) and glucan nanoparticles (Glu 130 and 355 NPs) was evaluated on human immune cells. While GPs and Glu 355 NPs demonstrated substantial interaction with Dectin-1 receptor on monocytes, Glu 130 NPs exhibited reduced activation of this receptor. This observation was substantiated by blocking Dectin-1, resulting in inhibition of reactive oxygen species production induced by GPs and Glu 355 NPs. Notably, monocyte-derived dendritic cells (moDCs) stimulated by Glu 355 NPs exhibited phenotypic and functional maturation, essential for antigen cross-presentation. The immunomodulatory efficacy was investigated using an autologous mixed lymphocyte reaction (AMLR), resulting in considerable rates of lymphocyte proliferation and an intriguing profile of cytokine and chemokine release. Our findings highlight the importance of meticulously characterizing the size and chemical composition of ß-glucan particles to draw accurate conclusions regarding their immunomodulatory activity. This in vitro model mimics the human cellular immune response, and the results obtained endorse the use of ß-glucan-based delivery systems as future vaccine adjuvants.


Asunto(s)
Glucanos , beta-Glucanos , Humanos , Glucanos/farmacología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Adyuvantes de Vacunas , beta-Glucanos/farmacología , beta-Glucanos/química , Antígenos
3.
Hum Reprod Open ; 2024(3): hoae028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803550

RESUMEN

STUDY QUESTION: What is the effect of the chemical in vitro activation (cIVA) protocol compared with fragmentation only (Frag, also known as mechanical IVA) on gene expression, follicle activation and growth in human ovarian tissue in vitro? SUMMARY ANSWER: Although histological assessment shows that cIVA significantly increases follicle survival and growth compared to Frag, both protocols stimulate extensive and nearly identical transcriptomic changes in cultured tissue compared to freshly collected ovarian tissue, including marked changes in energy metabolism and inflammatory responses. WHAT IS KNOWN ALREADY: Treatments based on cIVA of the phosphatase and tensin homolog (PTEN)-phosphatidylinositol 3-kinase (PI3K) pathway in ovarian tissue followed by auto-transplantation have been administered to patients with refractory premature ovarian insufficiency (POI) and resulted in live births. However, comparable effects with mere tissue fragmentation have been shown, questioning the added value of chemical stimulation that could potentially activate oncogenic responses. STUDY DESIGN SIZE DURATION: Fifty-nine ovarian cortical biopsies were obtained from consenting women undergoing elective caesarean section (C-section). The samples were fragmented for culture studies. Half of the fragments were exposed to bpV (HOpic)+740Y-P (Frag+cIVA group) during the first 24 h of culture, while the other half were cultured with medium only (Frag group). Subsequently, both groups were cultured with medium only for an additional 6 days. Tissue and media samples were collected for histological, transcriptomic, steroid hormone, and cytokine/chemokine analyses at various time points. PARTICIPANTS/MATERIALS SETTING METHODS: Effects on follicles were evaluated by counting and scoring serial sections stained with hematoxylin and eosin before and after the 7-day culture. Follicle function was assessed by quantification of steroids by ultra-performance liquid chromatography tandem-mass spectrometry at different time points. Cytokines and chemokines were measured by multiplex assay. Transcriptomic effects were measured by RNA-sequencing (RNA-seq) of the tissue after the initial 24-h culture. Selected differentially expressed genes (DEGs) were validated by quantitative PCR and immunofluorescence in cultured ovarian tissue as well as in KGN cell (human ovarian granulosa-like tumor cell line) culture experiments. MAIN RESULTS AND THE ROLE OF CHANCE: Compared to the Frag group, the Frag+cIVA group exhibited a significantly higher follicle survival rate, increased numbers of secondary follicles, and larger follicle sizes. Additionally, the tissue in the Frag+cIVA group produced less dehydroepiandrosterone compared to Frag. Cytokine measurement showed a strong inflammatory response at the start of the culture in both groups. The RNA-seq data revealed modest differences between the Frag+cIVA and Frag groups, with only 164 DEGs identified using a relaxed cut-off of false discovery rate (FDR) <0.1. Apart from the expected PI3K-protein kinase B (Akt) pathway, cIVA also regulated pathways related to hypoxia, cytokines, and inflammation. In comparison to freshly collected ovarian tissue, gene expression in general was markedly affected in both the Frag+cIVA and Frag groups, with a total of 3119 and 2900 DEGs identified (FDR < 0.001), respectively. The top enriched gene sets in both groups included several pathways known to modulate follicle growth such as mammalian target of rapamycin (mTOR)C1 signaling. Significant changes compared to fresh tissue were also observed in the expression of genes encoding for steroidogenesis enzymes and classical granulosa cell markers in both groups. Intriguingly, we discovered a profound upregulation of genes related to glycolysis and its upstream regulator in both Frag and Frag+cIVA groups, and these changes were further boosted by the cIVA treatment. Cell culture experiments confirmed glycolysis-related genes as direct targets of the cIVA drugs. In conclusion, cIVA enhances follicle growth, as expected, but the mechanisms may be more complex than PI3K-Akt-mTOR alone, and the impact on function and quality of the follicles after the culture period remains an open question. LARGE SCALE DATA: Data were deposited in the GEO data base, accession number GSE234765. The code for sequencing analysis can be found in https://github.com/tialiv/IVA_project. LIMITATIONS REASONS FOR CAUTION: Similar to the published IVA protocols, the first steps in our study were performed in an in vitro culture model where the ovarian tissue was isolated from the regulation of hypothalamic-pituitary-ovarian axis. Further in vivo experiments will be needed, for example in xeno-transplantation models, to explore the long-term impacts of the discovered effects. The tissue collected from patients undergoing C-section may not be comparable to tissue of patients with POI. WIDER IMPLICATIONS OF THE FINDINGS: The general impact of fragmentation and short (24 h) in vitro culture on gene expression in ovarian tissue far exceeded the effects of cIVA. Yet, follicle growth was stimulated by cIVA, which may suggest effects on specific cell populations that may be diluted in bulk RNA-seq. Nevertheless, we confirmed the impact of cIVA on glycolysis using a cell culture model, suggesting impacts on cellular signaling beyond the PI3K pathway. The profound changes in inflammation and glycolysis following fragmentation and culture could contribute to follicle activation and loss in ovarian tissue culture, as well as in clinical applications, such as fertility preservation by ovarian tissue auto-transplantation. STUDY FUNDING/COMPETING INTERESTS: This study was funded by research grants from European Union's Horizon 2020 Research and Innovation Programme (Project ERIN No. 952516, FREIA No. 825100), Swedish Research Council VR (2020-02132), StratRegen funding from Karolinska Institutet, KI-China Scholarship Council (CSC) Programme and the Natural Science Foundation of Hunan (2022JJ40782). International Iberian Nanotechnology Laboratory Research was funded by the European Union's H2020 Project Sinfonia (857253) and SbDToolBox (NORTE-01-0145-FEDER-000047), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund. No competing interests are declared.

4.
Toxicology ; 505: 153815, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685446

RESUMEN

Phthalates are found in everyday items like plastics and personal care products. There is an increasing concern that continuous exposure can adversely affect female fertility. However, experimental data are lacking to establish causal links between exposure and disease in humans. To address this gap, we tested the effects of a common phthalate metabolite, mono-(2-ethylhexyl) phthalate (MEHP), on adult human ovaries in vitro using an epidemiologically determined human-relevant concentration range (2.05 nM - 20.51 mM). Histomorphological assessments, steroid and cytokine measurements were performed on human ovarian tissue exposed to MEHP for 7 days in vitro. Cell viability and gene expression profile were investigated following 7 days of MEHP exposure using the human granulosa cancer cell lines KGN, and COV434, the germline tumor cell line PA-1, and human ovarian primary cells. Selected differentially expressed genes (DEGs) were validated by RT-qPCR and immunofluorescence in human ovarian tissue. MEHP exposure reduced follicular growth (20.51 nM) and increased follicular degeneration (20.51 mM) in ovarian tissue, while not affecting steroid and cytokine production. Out of the 691 unique DEGs identified across all the cell types and concentrations, CSRP2 involved in cytoskeleton organization and YWHAE as well as CTNNB1 involved in the Hippo pathway, were chosen for further validation. CSRP2 was upregulated and CTNNB1 downregulated in both ovarian tissue and cells, whereas YWHAE was downregulated in cells only. In summary, one-week MEHP exposure of human ovarian tissue can perturb the development and survival of human follicles through mechanisms likely involving dysregulation of cytoskeleton organization and Hippo pathway.


Asunto(s)
Supervivencia Celular , Dietilhexil Ftalato , Folículo Ovárico , Humanos , Femenino , Supervivencia Celular/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Folículo Ovárico/patología , Dietilhexil Ftalato/análogos & derivados , Dietilhexil Ftalato/toxicidad , Adulto , Línea Celular Tumoral , Citocinas/metabolismo , Citocinas/genética
5.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35683670

RESUMEN

The use of nanomaterials has been increasing in recent times, and they are widely used in industries such as cosmetics, drugs, food, water treatment, and agriculture. The rapid development of new nanomaterials demands a set of approaches to evaluate the potential toxicity and risks related to them. In this regard, nanosafety has been using and adapting already existing methods (toxicological approach), but the unique characteristics of nanomaterials demand new approaches (nanotoxicology) to fully understand the potential toxicity, immunotoxicity, and (epi)genotoxicity. In addition, new technologies, such as organs-on-chips and sophisticated sensors, are under development and/or adaptation. All the information generated is used to develop new in silico approaches trying to predict the potential effects of newly developed materials. The overall evaluation of nanomaterials from their production to their final disposal chain is completed using the life cycle assessment (LCA), which is becoming an important element of nanosafety considering sustainability and environmental impact. In this review, we give an overview of all these elements of nanosafety.

6.
Elife ; 112022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36173104

RESUMEN

Macrophages are a highly adaptive population of innate immune cells. Polarization with IFNγ and LPS into the 'classically activated' M1 macrophage enhances pro-inflammatory and microbicidal responses, important for eradicating bacteria such as Mycobacterium tuberculosis. By contrast, 'alternatively activated' M2 macrophages, polarized with IL-4, oppose bactericidal mechanisms and allow mycobacterial growth. These activation states are accompanied by distinct metabolic profiles, where M1 macrophages favor near exclusive use of glycolysis, whereas M2 macrophages up-regulate oxidative phosphorylation (OXPHOS). Here, we demonstrate that activation with IL-4 and IL-13 counterintuitively induces protective innate memory against mycobacterial challenge. In human and murine models, prior activation with IL-4/13 enhances pro-inflammatory cytokine secretion in response to a secondary stimulation with mycobacterial ligands. In our murine model, enhanced killing capacity is also demonstrated. Despite this switch in phenotype, IL-4/13 trained murine macrophages do not demonstrate M1-typical metabolism, instead retaining heightened use of OXPHOS. Moreover, inhibition of OXPHOS with oligomycin, 2-deoxy glucose or BPTES all impeded heightened pro-inflammatory cytokine responses from IL-4/13 trained macrophages. Lastly, this work identifies that IL-10 attenuates protective IL-4/13 training, impeding pro-inflammatory and bactericidal mechanisms. In summary, this work provides new and unexpected insight into alternative macrophage activation states in the context of mycobacterial infection.


Asunto(s)
Interleucina-10 , Interleucina-13 , Animales , Citocinas/metabolismo , Glucosa/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Lipopolisacáridos/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Ratones , Oligomicinas , Fosforilación Oxidativa
7.
Pharm Res ; 28(5): 986-1012, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21088986

RESUMEN

Hepatitis B virus (HBV) infection is a worldwide public health problem. Vaccination is the most efficient way to prevent hepatitis B. Despite the success of the currently available vaccine, there is a clear need for the development of new generation of HBV vaccines. Needle-free immunization is an attractive approach for mass immunization campaigns, since avoiding the use of needles reduces the risk of needle-borne diseases and prevents needle-stick injuries and pain, thus augmenting patient compliance and eliminating the need for trained medical personnel. Moreover, this kind of immunization was shown to induce good systemic as well as mucosal immunological responses, which is important for the creation of both a prophylactic and therapeutic vaccine. In order to produce a better, safer, more efficient and more suitable vaccine, adjuvants have been used. In this article, several adjuvants tested over the years for their potential to help create a needle-free vaccine against HBV are reviewed.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Vacunas contra Hepatitis B/administración & dosificación , Hepatitis B/prevención & control , Administración a través de la Mucosa , Administración Tópica , Animales , Vacunas contra Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Humanos , Inmunización/métodos
8.
Pharm Res ; 27(2): 211-23, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19953309

RESUMEN

It has long been known that protection against pathogens invading the organism via mucosal surfaces correlates better with the presence of specific antibodies in local secretions than with serum antibodies. The most effective way to induce mucosal immunity is to administer antigens directly to the mucosal surface. The development of vaccines for mucosal application requires antigen delivery systems and immunopotentiators that efficiently facilitate the presentation of the antigen to the mucosal immune system. This review provides an overview of the events within mucosal tissues that lead to protective mucosal immune responses. The understanding of those biological mechanisms, together with knowledge of the technology of vaccines and adjuvants, provides guidance on important technical aspects of mucosal vaccine design. Not being exhaustive, this review also provides information related to modern adjuvants, including polymeric delivery systems and immunopotentiators.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/tendencias , Diseño de Fármacos , Inmunidad Mucosa/inmunología , Vacunas/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos/normas , Humanos , Membrana Mucosa/química , Membrana Mucosa/inmunología , Guías de Práctica Clínica como Asunto/normas , Vacunas/síntesis química , Vacunas/inmunología
9.
ACS Chem Biol ; 15(9): 2415-2421, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32786261

RESUMEN

Macrophages are key immune cells for combatting Mycobacterium tuberculosis. However, M. tuberculosis possesses means to evade macrophage bactericidal responses by, for instance, secretion of the immunomodulatory para-hydroxybenzoic acid derivatives (pHBADs). While these molecules have been implicated in inhibiting macrophage responses in an acute context, little is known about their ability to reprogram macrophages via induction of long-term innate memory. Since innate memory has been highlighted as a promising strategy to augment bactericidal immune responses against M. tuberculosis, investigating corresponding immune evasion mechanisms is highly relevant. Our results reveal for the first time that pHBAD I and related molecules (unmethylated pHBAD I and the hexose l-rhamnose) reduce macrophage bactericidal mechanisms in both the short- and the long-term. Moreover, we demonstrate how methyl-p-anisate hinders bactericidal responses soon after exposure yet results in enhanced pro-inflammatory responses in the long-term. This work highlights new roles for these compounds in M. tuberculosis pathogenesis.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Parabenos/farmacología , Animales , Benzoatos/farmacología , Interleucina-10/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ramnosa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
10.
Nanoscale ; 12(20): 11192-11200, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32407430

RESUMEN

Graphene-based materials are of increasing interest for their potential use in biomedical applications. However, there is a need to gain a deeper understanding of how graphene modulates biological responses before moving towards clinical application. Innate immune training is a recently described phenomenon whereby cells of the innate immune system are capable of being programmed to generate an increased non-specific response upon subsequent challenge. This has been well established in the case of certain microbes and microbial products. However, little is known about the capacity of particulate materials, such as pristine graphene (pGr), to promote innate immune training. Here we report for the first time that while stimulation with pGr alone does not directly induce cytokine secretion by bone-marrow derived macrophages (BMDMs), it programs them for enhanced secretion of proinflammatory cytokines (IL-6, TNF-α) and a concomitant decrease in production of the regulatory cytokine, IL-10 after Toll-like receptor (TLR) ligand stimulation. This capacity of pGr to program cells for enhanced inflammatory responses could be overcome if the nanomaterial is incorporated in a collagen matrix. Our findings thus demonstrate the potential of graphene to modulate innate immunity over long timescales and have implications for the design and biomedical use of pGr-based materials.


Asunto(s)
Fulerenos/farmacología , Inmunidad Innata/efectos de los fármacos , Macrófagos/inmunología , Monocinas/inmunología , Receptores Toll-Like/inmunología , Animales , Fulerenos/química , Macrófagos/citología , Ratones
11.
J Pharm Pharmacol ; 71(6): 920-928, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30805935

RESUMEN

OBJECTIVES: The cationic biopolymer chitosan (CH) has emerged as a promising candidate adjuvant due to its safety profile and immunostimulatory properties. The presence of endotoxin contamination in biomaterials is generally underappreciated and can generate misleading results. It is important to establish a convenient methodology to obtain large amounts of high quality chitosan nanoparticles for biomedical applications. METHODS: We developed an easy method to generate endotoxin-free chitosan and assessed its purity using the Limulus amebocyte lysate assay and by measuring dendritic cell activation. KEY FINDINGS: Purified chitosan-based formulations alone failed to induce production of the proinflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL)-6 in bone marrow-derived dendritic cells (BMDCs) generated from C57BL/6 mice, while maintaining its ability to promote IL-1ß secretion in combination with the Toll-like receptor (TLR)-9 agonist, CpG. Moreover, BMDCs from C3H/HeN and TLR4-deficient mice, C3H/HeJ were stimulated with endotoxin-free chitosan-based formulations and no differences were observed in IL-6 and IL-1ß secretion, excluding the involvement of TLR-4 in the immunomodulatory effects of chitosan. CONCLUSIONS: The developed method provides simple guidelines for the production of endotoxin-free chitosan, ideal for biomedical applications.


Asunto(s)
Quitosano/farmacología , Células Dendríticas/efectos de los fármacos , Factores Inmunológicos/farmacología , Nanopartículas , Animales , Células de la Médula Ósea/citología , Quitosano/normas , Citocinas/metabolismo , Células Dendríticas/inmunología , Endotoxinas/análisis , Femenino , Factores Inmunológicos/normas , Mediadores de Inflamación/metabolismo , Prueba de Limulus/métodos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/farmacología
12.
Pharmaceutics ; 11(2)2019 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-30744102

RESUMEN

Current vaccine research is mostly based on subunit antigens. Despite the better toxicity profile of these antigens they are often poorly immunogenic, so adjuvant association has been explored as a strategy to obtain a potent vaccine formulation. Recently, mast cell activators were recognized as a new class of vaccine adjuvants capable of potentiating mucosal and systemic immune responses. In this study, a co-adjuvanted delivery system was developed and characterized, combining the mast cell activator C48/80 with chitosan nanoparticles (Chi-C48/80 NPs), and the results were compared with plain chitosan nanoparticles. The adsorption of model antigens onto the NP surface as well as the biocompatibility of the system was not affected by the incorporation of C48/80 in the formulation. The stability of the nanoparticles was demonstrated by studying the variation of size and zeta potential at different times, and the ability to be internalized by antigen presenting cells was confirmed by confocal microscopy. Vaccination studies with hepatitis B surface antigen loaded Chi-C48/80 NPs validated the adjuvanticity of the delivery system, demonstrating for the first time a successful association between a mast cell activator and chitosan nanoparticles as a vaccine adjuvant for hepatitis B virus, applied to a nasal vaccination strategy.

13.
Sci Rep ; 7(1): 2922, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592868

RESUMEN

The extent of regeneration following biomaterial implantation is dependent on the microenvironment surrounding the implant. Since implant composition can have a profound effect on inflammation, it is essential to understand this process as a non-resolving inflammatory response can lead to fibrous encapsulation and insufficient integration. Incorporation of particulates into implants confers structural and functional benefits, thus optimizing particulate characteristics to enhance immune mediated efficacy is important. We investigated the relationship between the nature of hydroxyapatite (HA) particles and the innate immune response, focusing on how particle size (0.1 µm, 5 µm, 20 µm, 100 µm) and morphology (needle-shaped/spherical; smooth/rough surface) modulates inflammatory responses. We observed a shape and size-dependent activation of the NLRP3 inflammasome and IL-1ß secretion; while needle-shaped and smaller HA particles significantly enhanced cytokine secretion, larger particles did not. Moreover, HA particle characteristics profoundly influenced patterns of innate immune cell recruitment and cytokine production following injection. While small, needle-shaped particles induced a strong inflammatory response, this was not observed with smooth, spherical particles of comparable size or with larger particles. These findings indicate that hydroxyapatite particle characteristics dictate immune cell recruitment and the ensuing inflammatory response, providing an opportunity to tailor HA particle characteristics to regulate immune responses induced after biomaterial implantation.


Asunto(s)
Materiales Biocompatibles/efectos adversos , Materiales Biocompatibles/química , Durapatita/efectos adversos , Durapatita/química , Inflamación/etiología , Implantación de Prótesis/efectos adversos , Animales , Microambiente Celular/inmunología , Fenómenos Químicos , Citocinas/biosíntesis , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Citometría de Flujo , Inflamación/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
14.
Adv Mater ; 28(27): 5525-41, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27167228

RESUMEN

Many biomaterials that are in both preclinical and clinical use are particulate in nature and there is a growing appreciation that the physicochemical properties of materials have a significant impact on their efficacy. The ability of particulates to modulate adaptive immune responses has been recognized for the past century but it is only in recent decades that a mechanistic understanding of how particulates can regulate these responses has emerged. It is now clear that particulate characteristics including size, charge, shape and porosity can influence the scale and nature of both the innate and adaptive immune responses. The potential to tailor biomaterials in order to regulate the type of innate immune response induced, offers significant opportunities in terms of designing systems with increased immune-mediated efficacy.


Asunto(s)
Inmunidad Innata , Células Dendríticas
15.
Methods Enzymol ; 509: 127-42, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22568904

RESUMEN

The design of antigen delivery systems, particularly for mucosal surfaces, has been a focus of interest in recent years. In this chapter, we describe the preparation of chitosan-based particles as promising antigen delivery systems for mucosal surfaces already tested by our group with hepatitis B surface antigen. The final proof of the concept is always carried out with immunization studies performed in an appropriate animal model. However, before these important studies, it is advisable that the delivery system should be submitted to a variety of in vitro tests. Among several tests, the characterization of the particles (size, morphology, and zeta potential), the studies of antigen adsorption onto particles, the evaluation of toxicity of the particles, and the studies of particle uptake into lymphoid organs are the most important and will be described in this chapter.


Asunto(s)
Adyuvantes Inmunológicos/química , Quitosano/química , Antígenos de Superficie de la Hepatitis B/química , Vacunas contra Hepatitis B/química , Nanoconjugados/química , Poliésteres/química , Adyuvantes Inmunológicos/administración & dosificación , Adsorción , Alginatos , Animales , Supervivencia Celular , Células Cultivadas , Ácido Glucurónico , Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/administración & dosificación , Vacunas contra Hepatitis B/administración & dosificación , Ácidos Hexurónicos , Proteínas Inmovilizadas/administración & dosificación , Proteínas Inmovilizadas/química , Absorción Intestinal , Ratones , Nanoconjugados/ultraestructura , Tamaño de la Partícula , Ganglios Linfáticos Agregados/metabolismo , Ratas , Bazo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA