Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 31(12): 5356-5370, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28790175

RESUMEN

JMJD6 is known to localize in the nucleus, exerting histone arginine demethylase and lysyl hydroxylase activities. A novel localization of JMJD6 in the extracellular matrix, resulting from its secretion as a soluble protein, was unveiled by a new anti-JMJD6 mAb called P4E11, which was developed to identify new targets in the stroma. Recombinant JMJD6 binds with collagen type I (Coll-I), and distinct JMJD6 peptides interfere with collagen fibrillogenesis, collagen-fibronectin interaction, and adhesion of human tumor cells to the collagen substrate. P4E11 and collagen binding to JMJD6 are mutually exclusive because the amino acid sequences of JMJD6 necessary for the interaction with Coll-I are part of the conformational epitope recognized by P4E11. In mice injected with mouse 4T1 breast carcinoma cells, treatment with P4E11 reduced fibrosis at the primary tumor and prevented lung metastases. Reduction of fibrosis has also been documented in human breast and ovarian tumors (MDA-MB-231 and IGROV1, respectively) xenotransplanted into immunodeficient mice treated with P4E11. In summary, this study uncovers a new localization and function for JMJD6 that is most likely independent from its canonical enzymatic activities, and demonstrates that JMJD6 can functionally interact with Coll-I. P4E11 mAb, inhibiting JMJD6/Coll-I interaction, represents a new opportunity to target fibrotic and tumor diseases.-Miotti, S., Gulino, A., Ferri, R., Parenza, M., Chronowska, A., Lecis, D., Sangaletti, S., Tagliabue, E., Tripodo, C., Colombo, M. P. Antibody-mediated blockade of JMJD6 interaction with collagen I exerts antifibrotic and antimetastatic activities.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Colágeno Tipo I/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Colágeno Tipo I/genética , Ensayo de Inmunoadsorción Enzimática , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Osteonectina/genética , Osteonectina/metabolismo , Biblioteca de Péptidos , Unión Proteica , Receptores de Superficie Celular/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Bioorg Med Chem Lett ; 27(11): 2336-2344, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28434765

RESUMEN

Putative dual action compounds (DACs 3a-d) based on azabicyclo[5.3.0]decane (ABD) Smac mimetic scaffolds linked to Zn2+-chelating 2,2'-dipicolylamine (DPA) through their 4 position are reported and characterized. Their synthesis, their target affinity (cIAP1 BIR3, Zn2+) in cell-free assays, their pro-apoptotic effects, and their cytotoxicity in tumor cells with varying sensitivity to Smac mimetics are described. A limited influence of Zn2+ chelation on in vitro activity of DPA-substituted DACs 3a-d was sometimes perceivable, but did not lead to strong cellular synergistic effects. In particular, the linker connecting DPA with the ABD scaffold seems to influence cellular Zn2+-chelation, with longer lipophilic linkers/DAC 3c being the optimal choice.


Asunto(s)
Compuestos de Azabiciclo/química , Compuestos de Azabiciclo/farmacología , Quelantes/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mitocondriales/metabolismo , Imitación Molecular , Zinc/química , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Quelantes/química , Humanos
3.
Bioorg Med Chem Lett ; 26(19): 4613-4619, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27578248

RESUMEN

Dual action compounds (DACs) based on 4-substituted aza-bicyclo[5.3.0]decane Smac mimetic scaffolds (ABDs) linked to a Zn(2+)-chelating moiety (DPA, o-hydroxy, m-allyl, N-acyl (E)-phenylhydrazone) through their 10 position are reported and characterized. Their synthesis, their target affinity (XIAP BIR3, Zn(2+)) in cell-free assays, their pro-apoptotic effects and cytotoxicity in tumor cells with varying sensitivity to Smac mimetics are described. The results are interpreted to evaluate the influence of Zn(2+) chelators on cell-free potency and on cellular permeability of DACs, and to propose novel avenues towards more potent antitumoral DACs based on Smac mimetics and Zn(2+) chelation.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Quelantes/farmacología , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Mitocondriales/química , Imitación Molecular , Zinc/química , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Quelantes/química , Cromatografía Líquida de Alta Presión , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Espectrofotometría Ultravioleta
4.
Mol Pharm ; 11(1): 283-93, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24256025

RESUMEN

Treatment of ovarian carcinoma often fails to be curative because of drug resistance, and many efforts are directed to overcome tumor cell resistance by increasing apoptosis induction. The potential of second mitochondria-derived activator of caspases (SMAC) mimetics (SMACm) has appeared in preclinical studies, but novel proapoptotic agents of this class with improved pharmacological profile are needed. To identify novel treatment options for ovarian carcinoma by interfering with antiapoptotic factors, in the present study a novel homodimeric SMACm (SM83) was employed in preclinical models both in vitro and in vivo. An investigation of the structural features of dimeric SM83 as compared to a closely related reference compound indicated slight differences, likely because of the interaction between one of the terminal phenyl groups and triazole rings of SM83 with the BIR2 domain. Although SM83 per se did not inhibit cell proliferation, it displayed a synergistic effect in combination with TNF-related apoptosis inducing ligand (TRAIL) in cell sensitivity assays. Because the tumor microenvironment is a reservoir of cytokines that may act in conjunction with SMACm to affect tumor growth, the activity of the novel compound was tested in vivo in ovarian carcinoma cells subcutaneously xenografted into immunodeficient mice. A significant tumor volume inhibition was observed together with activation of caspase 3 and apoptotic cell death. A biochemical analysis of tumor necrosis factor (TNF) and TRAIL content in specimens from xenografted mice indicated that SM83 downmodulated the levels of human TNF in plasma samples and tended to upmodulate human TRAIL levels in tumors. Thus, TRAIL appears to contribute to the antitumor activity of novel SMACm SM83 in subcutaneously grown ovarian carcinoma. Overall, our results indicate that SM83 is an attractive candidate for further development.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/farmacología , Apoptosis/efectos de los fármacos , Materiales Biomiméticos/farmacología , Proteínas Portadoras/farmacología , Péptidos y Proteínas de Señalización Intracelular/farmacología , Proteínas Mitocondriales/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Animales , Western Blotting , Proliferación Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Simulación de Dinámica Molecular , Neoplasias Ováricas/patología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/metabolismo
5.
Bioorg Med Chem Lett ; 24(10): 2374-8, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24736115

RESUMEN

Non-covalent (NP-1/3) and covalent (NP-A-1/3) pro-apoptotic SPION-Smac mimetic nano-conjugates antitumor agents are reported. The solution synthesis of key Smac mimetics, their support onto SPIONs through non-covalent adsorption (NP-1/3) or APTES-mediated covalent binding (NP-A-1/3), the analytical characterization of SPION-Smac mimetic conjugates, their target affinity in cell-free assays, and their cytotoxicity against tumor cells are thoroughly described.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Dextranos/química , Dextranos/farmacología , Péptidos y Proteínas de Señalización Intracelular/química , Nanopartículas de Magnetita/química , Proteínas Mitocondriales/química , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Línea Celular Tumoral , Células HeLa , Humanos , Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Unión Proteica
6.
Cancer Cell ; 10(6): 473-86, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17157788

RESUMEN

Che-1 is a RNA polymerase II-binding protein involved in the transcription of E2F target genes and induction of cell proliferation. Here we show that Che-1 contributes to DNA damage response and that its depletion sensitizes cells to anticancer agents. The checkpoint kinases ATM/ATR and Chk2 interact with Che-1 and promote its phosphorylation and accumulation in response to DNA damage. These Che-1 modifications induce a specific recruitment of Che-1 on the TP53 and p21 promoters. Interestingly, it has a profound effect on the basal expression of p53, which is preserved following DNA damage. Notably, Che-1 contributes to the maintenance of the G2/M checkpoint induced by DNA damage. These findings identify a mechanism by which checkpoint kinases regulate responses to DNA damage.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Genes p53 , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/fisiología , Animales , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada , División Celular , Quinasa de Punto de Control 2 , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Daño del ADN , Fase G2 , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Regiones Promotoras Genéticas , Transcripción Genética
7.
Cancer Immunol Res ; 12(9): 1147-1169, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38869181

RESUMEN

Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer that emerges as tumors become resistant to hormone therapies or, rarely, arises de novo in treatment-naïve patients. The urgent need for effective therapies against NEPC is hampered by the limited knowledge of the biology governing this lethal disease. Based on our prior observations in the transgenic adenocarcinoma of the mouse prostate (TRAMP) spontaneous prostate cancer model, in which the genetic depletion of either mast cells (MC) or the matricellular protein osteopontin (OPN) increases NEPC frequency, we tested the hypothesis that MCs can restrain NEPC through OPN production, using in vitro co-cultures between murine or human tumor cell lines and MCs, and in vivo experiments. We unveiled a role for the intracellular isoform of OPN, so far neglected compared with the secreted isoform. Mechanistically, we unraveled that the intracellular isoform of OPN promotes TNFα production in MCs via the TLR2/TLR4-MyD88 axis, specifically triggered by the encounter with NEPC cells. We found that MC-derived TNFα, in turn, hampered the growth of NEPC. We then identified the protein syndecan-1 (SDC1) as the NEPC-specific TLR2/TLR4 ligand that triggered this pathway. Interrogating published single-cell RNA-sequencing data, we validated this mechanism in a different mouse model. Translational relevance of the results was provided by in silico analyses of available human NEPC datasets and by immunofluorescence on patient-derived adenocarcinoma and NEPC lesions. Overall, our results show that MCs actively inhibit NEPC, paving the way for innovative MC-based therapies for this fatal tumor. We also highlight SDC1 as a potential biomarker for incipient NEPC.


Asunto(s)
Mastocitos , Osteopontina , Neoplasias de la Próstata , Factor de Necrosis Tumoral alfa , Osteopontina/metabolismo , Osteopontina/genética , Masculino , Animales , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Humanos , Ratones , Mastocitos/metabolismo , Mastocitos/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Línea Celular Tumoral , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/genética , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
8.
Cell Rep ; 43(2): 113794, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363677

RESUMEN

Acute myeloid leukemia (AML) progression is influenced by immune suppression induced by leukemia cells. ZEB1, a critical transcription factor in epithelial-to-mesenchymal transition, demonstrates immune regulatory functions in AML. Silencing ZEB1 in leukemic cells reduces engraftment and extramedullary disease in immune-competent mice, activating CD8 T lymphocytes and limiting Th17 cell expansion. ZEB1 in AML cells directly promotes Th17 cell development that, in turn, creates a self-sustaining loop and a pro-invasive phenotype, favoring transforming growth factor ß (TGF-ß), interleukin-23 (IL-23), and SOCS2 gene transcription. In bone marrow biopsies from AML patients, immunohistochemistry shows a direct correlation between ZEB1 and Th17. Also, the analysis of ZEB1 expression in larger datasets identifies two distinct AML groups, ZEB1high and ZEB1low, each with specific immunological and molecular traits. ZEB1high patients exhibit increased IL-17, SOCS2, and TGF-ß pathways and a negative association with overall survival. This unveils ZEB1's dual role in AML, entwining pro-tumoral and immune regulatory capacities in AML blasts.


Asunto(s)
Leucemia Mieloide Aguda , Células Th17 , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Proliferación Celular , Factor de Crecimiento Transformador beta , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
9.
Cancer Res ; 83(1): 117-129, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36318106

RESUMEN

Cancer is a systemic disease able to reprogram the bone marrow (BM) niche towards a protumorigenic state. The impact of cancer on specific BM subpopulations can qualitatively differ according to the signals released by the tumor, which can vary on the basis of the tissue of origin. Using a spontaneous model of mammary carcinoma, we identified BM mesenchymal stem cells (MSC) as the first sensors of distal cancer cells and key mediators of BM reprogramming. Through the release of IL1B, BM MSCs induced transcriptional upregulation and nuclear translocation of the activating transcription factor 3 (ATF3) in hematopoietic stem cells. ATF3 in turn promoted the formation of myeloid progenitor clusters and sustained myeloid cell differentiation. Deletion of Atf3 specifically in the myeloid compartment reduced circulating monocytes and blocked their differentiation into tumor-associated macrophages. In the peripheral blood, the association of ATF3 expression in CD14+ mononuclear cells with the expansion CD11b+ population was able to discriminate between women with malignant or benign conditions at early diagnosis. Overall, this study identifies the IL1B/ATF3 signaling pathway in the BM as a functional step toward the establishment of a tumor-promoting emergency myelopoiesis, suggesting that ATF3 could be tested in a clinical setting as a circulating marker of early transformation and offering the rationale for testing the therapeutic benefits of IL1B inhibition in patients with breast cancer. Significance: Bone marrow mesenchymal stem cells respond to early breast tumorigenesis by upregulating IL1B to promote ATF3 expression in hematopoietic stem cells and to induce myeloid cell differentiation that supports tumor development.


Asunto(s)
Médula Ósea , Neoplasias de la Mama , Humanos , Femenino , Médula Ósea/patología , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Neoplasias de la Mama/patología , Células Madre Hematopoyéticas/metabolismo , Transformación Celular Neoplásica/metabolismo , Células de la Médula Ósea/metabolismo
10.
Mol Cancer Res ; 21(6): 614-627, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36867680

RESUMEN

Breast cancer is the most common type of cancer in women worldwide, with the luminal subtype being the most widespread. Although characterized by better prognosis compared with other subtypes, luminal breast cancer is still considered a threatening disease due to therapy resistance, which occurs via both cell- and non-cell-autonomous mechanisms. Jumonji domain-containing 6, arginine demethylase and lysine hydroxylase (JMJD6) is endowed with a negative prognostic value in luminal breast cancer and, via its epigenetic activity, it is known to regulate many intrinsic cancer cell pathways. So far, the effect of JMJD6 in molding the surrounding microenvironment has not been explored.Here, we describe a novel function of JMJD6 showing that its genetic inhibition in breast cancer cells suppresses lipid droplet formation and ANXA1 expression, via estrogen receptor alpha and PPARα modulation. Reduction of intracellular ANXA1 results in decreased release in the tumor microenvironment (TME), ultimately preventing M2-type macrophage polarization and tumor aggressiveness. IMPLICATIONS: Our findings identify JMJD6 as a determinant of breast cancer aggressiveness and provide the rationale for the development of inhibitory molecules to reduce disease progression also through the remodeling of TME composition.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Microambiente Tumoral , Histona Demetilasas con Dominio de Jumonji/genética , Macrófagos/patología
11.
Bioorg Med Chem Lett ; 22(6): 2204-8, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22342627

RESUMEN

A set of phenyl-substituted Smac mimetics/IAP inhibitor analogues of lead compound 2a was synthesized, aiming to retain its strong cell-free potency while increasing its bioavailability. Seventeen compounds 2b-r were prepared and characterized in vitro, using cell-free and cellular assays. Among them, the p-CF(3) substituted analogue 2m showed the best permeability through cell membranes, and was selected for further in vitro and in vivo studies due to its strong, sub-micromolar cellular potency.


Asunto(s)
Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Mitocondriales/química , Peptidomiméticos/síntesis química , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis , Sitios de Unión , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Modelos Moleculares , Estructura Molecular , Peptidomiméticos/farmacología , Unión Proteica , Relación Estructura-Actividad
12.
Bioorg Med Chem ; 20(22): 6709-23, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23062821

RESUMEN

Novel pro-apoptotic, homodimeric and heterodimeric Smac mimetics/IAPs inhibitors connected through head-head (8), tail-tail (9) or head-tail linkers (10), were biologically and structurally characterized. In vitro characterization (binding to BIR3 and linker-BIR2-BIR3 domains from XIAP and cIAP1, cytotoxicity assays) identified early leads from each dimer family. Computational models and structural studies (crystallography, NMR, gel filtration) partially rationalized the observed properties for each dimer class. Tail-tail dimer 9a was shown to be active in a breast and in an ovary tumor model, highlighting the potential of dimeric Smac mimetics/IAP inhibitors based on the N-AVPI-like 4-substituted 1-aza-2-oxobicyclo[5.3.0]decane scaffold as potential antineoplastic agents.


Asunto(s)
Materiales Biomiméticos/química , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Oligopéptidos/química , Animales , Sitios de Unión , Materiales Biomiméticos/uso terapéutico , Materiales Biomiméticos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Dimerización , Femenino , Células HL-60 , Semivida , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Ratones , Ratones Desnudos , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Neoplasias Ováricas/tratamiento farmacológico , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Trasplante Heterólogo
13.
Cancer Res ; 82(8): 1439-1447, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35045983

RESUMEN

Tumor outcome is determined not only by cancer cell-intrinsic features but also by the interaction between cancer cells and their microenvironment. There is great interest in tumor-infiltrating immune cells, yet mast cells have been less studied. Recent work has highlighted the impact of mast cells on the features and aggressiveness of cancer cells, but the eventual effect of mast cell infiltration is still controversial. Here, we review multifaceted findings regarding the role of mast cells in cancer, with a particular focus on breast cancer, which is further complicated because of its classification into subtypes characterized by different biological features, outcome, and therapeutic strategies.


Asunto(s)
Neoplasias de la Mama , Mastocitos , Neoplasias de la Mama/patología , Femenino , Humanos , Mastocitos/patología , Microambiente Tumoral
14.
J Exp Clin Cancer Res ; 41(1): 78, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35216615

RESUMEN

BACKGROUND: Progression to stage IV disease remains the main cause of breast cancer-related deaths. Increasing knowledge on the hematogenous phase of metastasis is key for exploiting the entire window of opportunity to interfere with early dissemination and to achieve a more effective disease control. Recent evidence suggests that circulating tumor cells (CTCs) possess diverse adaptive mechanisms to survive in blood and eventually metastasize, encouraging research into CTC-directed therapies. METHODS: On the hypothesis that the distinguishing molecular features of CTCs reveal useful information on metastasis biology and disease outcome, we compared the transcriptome of CTCs, primary tumors, lymph-node and lung metastases of the MDA-MB-231 xenograft model, and assessed the biological role of a panel of selected genes, by in vitro and in vivo functional assays, and their clinical significance in M0 and M+ breast cancer patients. RESULTS: We found that hematogenous dissemination is governed by a transcriptional program and identified a CTC signature that includes 192 up-regulated genes, mainly related to cell plasticity and adaptation, and 282 down-regulated genes, involved in chromatin remodeling and transcription. Among genes up-regulated in CTCs, FADS3 was found to increases cell membrane fluidity and promote hematogenous diffusion and lung metastasis formation. TFF3 was observed to be associated with a subset of CTCs with epithelial-like features in the experimental model and in a cohort of 44 breast cancer patients, and to play a role in cell migration, invasion and blood-borne dissemination. The analysis of clinical samples with a panel of CTC-specific genes (ADPRHL1, ELF3, FCF1, TFF1 and TFF3) considerably improved CTC detection as compared with epithelial and tumor-associated markers both in M0 and stage IV patients, and CTC kinetics informed disease relapse in the neoadjuvant setting. CONCLUSIONS: Our findings provide evidence on the potential of a CTC-specific molecular profile as source of metastasis-relevant genes in breast cancer experimental models and in patients. Thanks to transcriptome analysis we generated a novel CTC signature in the MDA-MB-231 xenograft model, adding a new piece to the current knowledge on the key players that orchestrate tumor cell hematogenous dissemination and breast cancer metastasis, and expanding the list of CTC-related biomarkers for future validation studies.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/metabolismo
15.
Breast Cancer Res Treat ; 130(1): 207-15, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21562711

RESUMEN

CHEK2 gene mutations occur in a subset of patients with familial breast cancer, acting as moderate/low penetrance cancer susceptibility alleles. Although CHEK2 is no longer recognized as a major determinant of the Li-Fraumeni syndrome, a hereditary condition predisposing to cancer at multiple sites, it cannot be ruled out that mutations of this gene play a role in malignancies arising in peculiar multi-cancer families. To assess the contribution of CHEK2 to the breast cancer/sarcoma phenotype, we screened for germ-line sequence variations of the gene among 12 probands from hereditary breast/ovarian cancer families with one case of sarcoma that tested wild-type for mutations in the BRCA1, BRCA2, and TP53 genes. Two cases harbored previously unreported mutations in CHEK2, the c.507delT and c.38A>G, leading to protein truncation (p.Phe169LeufsX2) and amino acid substitution (p.His13Arg), respectively. These mutations were not considered common polymorphic variants, as they were undetected in 230 healthy controls of the same ethnic origin. While the c.38A>G encodes a mutant protein that behaves in biochemical assays as the wild-type form, the c.507delT is a loss-of-function mutation. The identification of two previously unreported CHEK2 variants, including a truncating mutation leading to constitutional haploinsufficiency, in individuals belonging to families selected for breast cancer/sarcoma phenotype, supports the hypothesis that the CHEK2 gene may act as a factor contributing to individual tumor development in peculiar familial backgrounds.


Asunto(s)
Neoplasias de la Mama/genética , Mutación de Línea Germinal , Proteínas Serina-Treonina Quinasas/genética , Sarcoma/genética , Alelos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Quinasa de Punto de Control 2 , Salud de la Familia , Femenino , Regulación Neoplásica de la Expresión Génica , Genes BRCA1 , Genes BRCA2 , Genes p53 , Predisposición Genética a la Enfermedad , Células HCT116 , Humanos , Persona de Mediana Edad , Linaje , Proteínas Serina-Treonina Quinasas/metabolismo , Sarcoma/metabolismo
16.
Invest New Drugs ; 29(6): 1264-75, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20614162

RESUMEN

The Inhibitor of Apoptosis Proteins (IAPs) are important regulators of programmed cell death. XIAP is the most potent among them and is over-expressed in several hematological malignancies. Its activity is endogenously antagonized by SMAC/DIABLO, and also by small molecules mimicking Smac that can induce apoptosis in tumor cells. Here we describe the activity of 56 newly synthesized Smac-mimetics in human leukemic cell lines and normal CD34(+) progenitor cells. Our compounds bind to XIAP with high affinity, reduce the levels of cIAP1 and are cytotoxic at nanomolar or low micromolar concentrations. Furthermore, the Smac-mimetics synergize with Cytarabine, Etoposide and especially with TRAIL in combination treatments. Apoptosis activation was clearly detectable by the occurrence of sub G(1) apoptotic peak and the accumulation of cleaved PARP, caspase 8 and caspase 3. Interestingly, the down-regulation of XIAP sensitized Jurkat cells to drugs too, confirming the role of this protein in drug-resistance. In conclusion, while being very active in leukemic cells, our Smac-mimetics have modest effects on normal hematopoietic progenitors, suggesting their promising therapeutic potential as a new class of anticancer drugs in onco-hematology, particularly when combined with TRAIL, to overcome the resistance of cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leucemia/tratamiento farmacológico , Proteínas Mitocondriales/metabolismo , Antígenos CD34/metabolismo , Antineoplásicos/química , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Citarabina/farmacología , Sinergismo Farmacológico , Etopósido/farmacología , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Leucemia/patología , Unión Proteica , Células Madre/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
17.
J Exp Clin Cancer Res ; 40(1): 376, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852841

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a highly conserved cellular surveillance mechanism, commonly studied for its role in mRNA quality control because of its capacity of degrading mutated mRNAs that would produce truncated proteins. However, recent studies have proven that NMD hides more complex tasks involved in a plethora of cellular activities. Indeed, it can control the stability of mutated as well as non-mutated transcripts, tuning transcriptome regulation. NMD not only displays a pivotal role in cell physiology but also in a number of genetic diseases. In cancer, the activity of this pathway is extremely complex and it is endowed with both pro-tumor and tumor suppressor functions, likely depending on the genetic context and tumor microenvironment. NMD inhibition has been tested in pre-clinical studies showing favored production of neoantigens by cancer cells, which can stimulate the triggering of an anti-tumor immune response. At the same time, NMD inhibition could result in a pro-tumor effect, increasing cancer cell adaptation to stress. Since several NMD inhibitors are already available in the clinic to treat genetic diseases, these compounds could be redirected to treat cancer patients, pending the comprehension of these variegated NMD regulation mechanisms. Ideally, an effective strategy should exploit the anti-tumor advantages of NMD inhibition and simultaneously preserve its intrinsic tumor suppressor functions. The targeting of NMD could provide a new therapeutic opportunity, increasing the immunogenicity of tumors and potentially boosting the efficacy of the immunotherapy agents now available for cancer treatment.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Mutación , Neoplasias/terapia
18.
Comput Struct Biotechnol J ; 19: 6366-6374, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938412

RESUMEN

Inhibitors of apoptosis proteins (IAPs) are validated onco-targets, as their overexpression correlates with cancer onset, progression, diffusion and chemoresistance. IAPs regulate cell death survival pathways, inflammation, and immunity. Targeting IAPs, by impairing their protein-protein interaction surfaces, can affect events occurring at different stages of cancer development. To this purpose, we employed a rational virtual screening approach to identify compounds predicted to interfere with the assembly of pro-survival macromolecular complexes. One of the candidates, FC2, was shown to bind in vitro the BIR1 domains of both XIAP and cIAP2. Moreover, we demonstrated that FC2 can induce cancer cell death as a single agent and, more potently, in combination with the Smac-mimetic SM83 or with the cytokine TNF. FC2 determined a prolonged activation of the NF-κB pathway, accompanied to a stabilization of XIAP-TAB1 complex. This candidate molecule represents a valuable lead compound for the development of a new class of IAP-antagonists for cancer treatment.

19.
Sci Rep ; 11(1): 651, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436685

RESUMEN

We xeno-transplanted human neural precursor cells derived from induced pluripotent stem cells into the cerebellum and brainstem of mice and rats during prenatal development or the first postnatal week. The transplants survived and started to differentiate up to 1 month after birth when they were rejected by both species. Extended survival and differentiation of the same cells were obtained only when they were transplanted in NOD-SCID mice. Transplants of human neural precursor cells mixed with the same cells after partial in vitro differentiation or with a cellular extract obtained from adult rat cerebellum increased survival of the xeno-graft beyond one month. These findings are consistent with the hypothesis that the slower pace of differentiation of human neural precursors compared to that of rodents restricts induction of immune-tolerance to human antigens expressed before completion of maturation of the immune system. With further maturation the transplanted neural precursors expressed more mature antigens before the graft were rejected. Supplementation of the immature cells suspensions with more mature antigens may help to induce immune-tolerance for those antigens expressed only later by the engrafted cells.


Asunto(s)
Diferenciación Celular , Cerebelo/inmunología , Supervivencia de Injerto , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Neuronas/trasplante , Trasplante de Células Madre/métodos , Animales , Células Cultivadas , Cerebelo/crecimiento & desarrollo , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neuronas/citología , Ratas , Ratas Wistar , Especificidad de la Especie , Trasplante Heterólogo
20.
iScience ; 24(6): 102510, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34142027

RESUMEN

The secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein with unexpected immunosuppressive function in myeloid cells. We investigated the role of SPARC in autoimmunity using the pristane-induced model of lupus that, in mice, mimics human systemic lupus erythematosus (SLE). Sparc -/- mice developed earlier and more severe renal disease, multi-organ parenchymal damage, and arthritis than the wild-type counterpart. Sparc +/- heterozygous mice showed an intermediate phenotype suggesting Sparc gene dosage in autoimmune-related events. Mechanistically, reduced Sparc expression in neutrophils blocks their clearance by macrophages, through defective delivery of don't-eat-me signals. Dying Sparc -/- neutrophils that escape macrophage scavenging become source of autoantigens for dendritic cell presentation and are a direct stimulation for γδT cells. Gene profile analysis of knee synovial biopsies from SLE-associated arthritis showed an inverse correlation between SPARC and key autoimmune genes. These results point to SPARC down-regulation as a leading event characterizing SLE and rheumatoid arthritis pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA