Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34004146

RESUMEN

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Asunto(s)
Hipocampo/citología , Neocórtex/citología , Transcriptoma/genética , Animales , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
Cell ; 183(4): 935-953.e19, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186530

RESUMEN

Neurons are frequently classified into distinct types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 4,200 mouse visual cortical GABAergic interneurons and reconstructed the local morphologies of 517 of those neurons. We find that most transcriptomic types (t-types) occupy specific laminar positions within visual cortex, and, for most types, the cells mapping to a t-type exhibit consistent electrophysiological and morphological properties. These properties display both discrete and continuous variation among t-types. Through multimodal integrated analysis, we define 28 met-types that have congruent morphological, electrophysiological, and transcriptomic properties and robust mutual predictability. We identify layer-specific axon innervation pattern as a defining feature distinguishing different met-types. These met-types represent a unified definition of cortical GABAergic interneuron types, providing a systematic framework to capture existing knowledge and bridge future analyses across different modalities.


Asunto(s)
Corteza Cerebral/citología , Fenómenos Electrofisiológicos , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Transcriptoma/genética , Animales , Femenino , Perfilación de la Expresión Génica , Hipocampo/fisiología , Canales Iónicos/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo
3.
Nature ; 624(7991): 403-414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092914

RESUMEN

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Vías Nerviosas , Neuronas , Médula Espinal , Animales , Ratones , Hipotálamo , Neuronas/metabolismo , Neuropéptidos , Médula Espinal/citología , Médula Espinal/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Neurotransmisores , Mesencéfalo/citología , Formación Reticular/citología , Electrofisiología , Cerebelo/citología , Corteza Cerebral/citología
4.
Nature ; 624(7991): 317-332, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092916

RESUMEN

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Transcriptoma , Animales , Ratones , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/metabolismo , Conjuntos de Datos como Asunto , Hibridación Fluorescente in Situ , Vías Nerviosas , Neuronas/clasificación , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , ARN/análisis , Análisis de Expresión Génica de una Sola Célula , Factores de Transcripción/metabolismo , Transcriptoma/genética
5.
Nature ; 598(7879): 151-158, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616067

RESUMEN

The neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth3. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer's disease4,5. Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.


Asunto(s)
Ácido Glutámico/metabolismo , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Neuronas/citología , Neuronas/metabolismo , Enfermedad de Alzheimer , Animales , Forma de la Célula , Colágeno/metabolismo , Electrofisiología , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Lisina/análogos & derivados , Masculino , Ratones , Neocórtex/anatomía & histología , Neuronas/clasificación , Técnicas de Placa-Clamp , Transcriptoma
7.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37628993

RESUMEN

Inotodiol, a lanostane-type triterpenoid, and many phytochemicals from Chaga mushrooms have been investigated for various allergic diseases. However, the anti-aging and anti-inflammatory activities of inotodiol under different types of oxidative stress and the impact of inotodiol on collagen and hyaluronan synthesis have not been sufficiently studied. Lanostane triterpenoids-rich concentrate, which contained 10% inotodiol as major (inotodiol concentrate), was prepared from Chaga and compared with pure inotodiol in terms of anti-inflammatory activities on a human keratinocyte cell line, HaCaT cells, under various stimulations such as stimulation with ultraviolet (UV) B or tumor necrosis factor (TNF)-α. In stimulation with TNF-α, interleukin (IL)-1ß, IL-6, and IL-8 genes were significantly repressed by 0.44~4.0 µg/mL of pure inotodiol. UVB irradiation induced the overexpression of pro-inflammatory cytokines, but those genes were significantly suppressed by pure inotodiol or inotodiol concentrate. Moreover, pure inotodiol/inotodiol concentrate could also modulate the synthesis of collagen and hyaluronic acid by controlling COL1A2 and HAS2/3 expression, which implies a crucial role for pure inotodiol/inotodiol concentrate in the prevention of skin aging. These results illuminate the anti-inflammatory and anti-aging effects of pure inotodiol/inotodiol concentrate, and it is highly conceivable that pure inotodiol and inotodiol concentrate could be promising natural bioactive substances to be incorporated in therapeutic and beautifying applications.


Asunto(s)
Células HaCaT , Triterpenos , Humanos , Triterpenos/farmacología , Queratinocitos , Estrés Oxidativo , Esteroides
8.
Nature ; 535(7612): 367-75, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27409810

RESUMEN

The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Macaca mulatta/genética , Transcriptoma , Envejecimiento/genética , Animales , Trastorno del Espectro Autista/genética , Encéfalo/citología , Encéfalo/embriología , Adhesión Celular , Secuencia Conservada , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Trastornos del Neurodesarrollo/genética , Neurogénesis/genética , Factores de Riesgo , Esquizofrenia/genética , Análisis Espacio-Temporal , Especificidad de la Especie , Transcripción Genética/genética
9.
Cereb Cortex ; 31(1): 356-378, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32901251

RESUMEN

The posterior parietal cortex (PPC) is a major multimodal association cortex implicated in a variety of higher order cognitive functions, such as visuospatial perception, spatial attention, categorization, and decision-making. The PPC is known to receive inputs from a collection of sensory cortices as well as various subcortical areas and integrate those inputs to facilitate the execution of functions that require diverse information. Although many recent works have been performed with the mouse as a model system, a comprehensive understanding of long-range connectivity of the mouse PPC is scarce, preventing integrative interpretation of the rapidly accumulating functional data. In this study, we conducted a detailed neuroanatomic and bioinformatic analysis of the Allen Mouse Brain Connectivity Atlas data to summarize afferent and efferent connections to/from the PPC. Then, we analyzed variability between subregions of the PPC, functional/anatomical modalities, and species, and summarized the organizational principle of the mouse PPC. Finally, we confirmed key results by using additional neurotracers. A comprehensive survey of the connectivity will provide an important future reference to comprehend the function of the PPC and allow effective paths forward to various studies using mice as a model system.


Asunto(s)
Atención/fisiología , Cognición/fisiología , Red Nerviosa/patología , Lóbulo Parietal/fisiología , Animales , Mapeo Encefálico/métodos , Ratones , Red Nerviosa/fisiología
10.
Molecules ; 27(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897881

RESUMEN

Chaga mushroom (Inonotus obliquus) comprises polyphenolic compounds, triterpenoids, polysaccharides, and sterols. Among the triterpenoid components, inotodiol has been broadly examined because of its various biological activities. The purpose of this study is to examine inotodiol from a safety point of view and to present the potential possibilities of inotodiol for medical usage. From chaga mushroom extract, crude inotodiol (INO20) and pure inotodiol (INO95) were produced. Mice were treated with either INO20 or INO95 once daily using oral administration for repeated dose toxicity evaluation. Serum biochemistry parameters were analyzed, and the level of pro-inflammatory cytokines in the serum was quantified. In parallel, the effect of inotodiol on food allergic symptoms was investigated. Repeated administration of inotodiol did not show any mortality or abnormalities in organs. In food allergy studies, the symptoms of diarrhea were ameliorated by administration with INO95 and INO20. Furthermore, the level of MCPT-1 decreased by treatment with inotodiol. In this study, we demonstrated for the first time that inotodiol does not cause any detrimental effect by showing anti-allergic activities in vivo by inhibiting mast cell function. Our data highlight the potential to use inotodiol as an immune modulator for diseases related to inflammation.


Asunto(s)
Lanosterol , Triterpenos , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Inonotus , Lanosterol/análogos & derivados , Lanosterol/farmacología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA