Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650627

RESUMEN

Platinum-based drugs have revolutionized cancer care, but are unfortunately associated with various adverse effects. Meanwhile, natural product scaffolds exhibit multifarious bioactivities and serve as an attractive resource for cancer therapy development. Thus, the conjugation of natural product scaffolds to metal complexes becomes an attractive strategy to reduce the severe side effects arising from the use of metal bearing drugs. This review aims to highlight the recent examples of natural product-conjugated metal complexes as cancer therapies with enhanced selectivity and efficacy. We discuss the mechanisms and features of different conjugate complexes and present an outlook and perspective for the future of this field.


Asunto(s)
Productos Biológicos/uso terapéutico , Complejos de Coordinación/uso terapéutico , Metales/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Productos Biológicos/química , Complejos de Coordinación/química , Humanos , Metales/efectos adversos
2.
Inorg Chem ; 47(22): 10308-16, 2008 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-18850698

RESUMEN

trans-[Ru(16-TMC)(C[triple bond]N)2] (1; 16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane) was prepared by the reaction of trans-[Ru(16-TMC)Cl2]Cl with KCN in the presence of zinc powder. The oxidation of 1 with bromine gave trans-[Ru(16-TMC)(CN)2]+ isolated as PF6 salt (2.PF6). The Ru-C/C-N distances are 2.061(4)/1.130(5) and 2.069(5)/1.140(7) A for 1 and 2, respectively. Both complexes show a Ru(III/II) couple at 0.10 V versus FeCp2+/0. The UV-vis absorption spectrum of 1 is dominated by an intense high-energy absorption at lambda(max) = 230 nm, which is mainly originated from dpi(RuII) --> pi*(N[triple bond]C-Ru-C[triple bond]N) charge-transfer transition. Complex 2 shows intense absorption bands at lambda(max) pi*(N[triple bond]C-Ru-C[triple bond]N) and sigma(-CN) --> d(RuIII) charge-transfer transition, respectively. Density functional theory and time-dependent density-functional theory calculations have been performed on trans-[(NH3)4Ru(C[triple bond]N)2] (1') and trans-[(NH3)4Ru(C[triple bond]N)2]+ (2') to examine the Ru-cyanide interaction and the nature of associated electronic transition(s). The 230 nm band of 1 has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nuC[triple bond]N stretch mode accounts for ca. 66% of the total vibrational reorganization energy. A change of nominal bond order for the cyanide ligand from 3 to 2.5 is estimated upon the electronic excitation.


Asunto(s)
Aminas/química , Cianuros/química , Compuestos Macrocíclicos/química , Compuestos Organometálicos/química , Rutenio/química , Aminas/síntesis química , Cristalografía por Rayos X , Cianuros/síntesis química , Electroquímica , Ligandos , Compuestos Macrocíclicos/síntesis química , Compuestos Organometálicos/síntesis química , Espectrofotometría Ultravioleta , Espectrometría Raman
3.
J Mater Chem B ; 6(4): 537-544, 2018 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32254482

RESUMEN

Phosphorescent iridium(iii) complexes have gained increasing attention in biological applications owing to their excellent photophysical properties and efficient transportation into live cells. Their advantageous properties make them useful tools for enabling the intracellular detection of many different species for biological and medical applications. In this review, we summarize recent studies on the combination of iridium(iii) complexes and nanomaterials for intracellular sensing, drug delivery and photodynamic therapy. Various mechanisms and application modes are described and compared, and the outlook and future directions of this field are discussed as well.

4.
Sci Rep ; 7(1): 8980, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827747

RESUMEN

A sensitive turn-on luminescent sensor for H2O2 based on the silver nanoparticle (AgNP)-mediated quenching of an luminescent Ir(III) complex (Ir-1) has been designed. In the absence of H2O2, the luminescence intensity of Ir-1 can be quenched by AgNPs via non-radiative energy transfer. However, H2O2 can oxidize AgNPs to soluble Ag+ cations, which restores the luminescence of Ir-1. The sensing platform displayed a sensitive response to H2O2 in the range of 0-17 µM, with a detection limit of 0.3 µM. Importantly, the probe was successfully applied to monitor intracellular H2O2 in living cells, and it also showed high selectivity for H2O2 over other interfering substances.


Asunto(s)
Células Epiteliales/química , Peróxido de Hidrógeno/análisis , Microscopía Intravital/métodos , Iridio/metabolismo , Mediciones Luminiscentes/métodos , Nanopartículas del Metal , Plata/metabolismo , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA