Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cells ; 21(2): 284-93, 2006 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-16682825

RESUMEN

Even though Ac/Ds gene-tagging systems have been established in many higher plants, maize is the only major plant in which short-distance transposition of Ac/Ds has been utilized to probe gene function. This study was performed to evaluate the efficiency of obtaining new alleles and functional revertants from Ds insertion loci in rice. By analyzing 1,580 plants and the progeny of selected lines, the insertion sites and orientations of Ds elements within 16 new heritable alleles of three rice loci were identified and characterized. Intragenic transposition was detected in both directions from the original insertion sites. The closest interval was 35 bp. Three of the alleles had two Ds elements in cis configuration in the same transcription units. We also analyzed the excision footprints of intragenic and extragenic transpositions in Ds-inserted alleles at 5 loci. The 134 footprints obtained from different plants revealed predominant patterns. Ds excision at each locus left a predominant footprint at frequencies of 30-75%. Overall, 66% of the footprints were 7-bp additions. In addition, 16% of the excisions left 0-, 3-, 6-, and 9-bp additions with the potential of conserving reading frame.


Asunto(s)
Alelos , Elementos Transponibles de ADN , Variación Genética , Mutagénesis Insercional , Zea mays/genética , Secuencia de Bases , ADN de Plantas/genética , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
2.
Mol Cells ; 14(2): 231-7, 2002 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-12442895

RESUMEN

Many aspects of epigenetic phenomena have been elucidated via studies of transposable elements. An active transposable element frequently loses its ability to mobilize and goes into an inactive state during development. In this study, we describe the cyclic activity of a maize transposable element dissociation (Ds) in rice. In rice genome, Ds undergoes the spontaneous loss of mobility. However, an inactive state of Ds can be changed into an active state during tissue culture. The recovery of mobility accompanies not only changes in the methylation patterns of the terminal region of Ds, but also alteration in the steady state level of the activator (Ac) mRNA that is expressed by a constitutive CaMV 35S promoter. Furthermore, the Ds-reactivation process is not random, but stage-specific during plantlet regeneration. Our findings have expanded previous observations on Ac reactivation in the tissue culture of maize.


Asunto(s)
Elementos Transponibles de ADN , Oryza/crecimiento & desarrollo , Oryza/genética , Elementos Transponibles de ADN/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA