Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 160(5): 856-869, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25684365

RESUMEN

Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair single-strand DNA (ssDNA) with a homologous double-strand DNA (dsDNA) template. Here, we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a ninth nucleotide coincides with an additional reduction in binding free energy, and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination.


Asunto(s)
Recombinación Homóloga , Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Emparejamiento Cromosómico , Reparación del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia
2.
Nucleic Acids Res ; 52(1): 259-273, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994723

RESUMEN

R-loops are three-stranded nucleic acid structures that can cause replication stress by blocking replication fork progression. However, the detailed mechanism underlying the collision of DNA replication forks and R-loops remains elusive. To investigate how R-loops induce replication stress, we use single-molecule fluorescence imaging to directly visualize the collision of replicating Phi29 DNA polymerase (Phi29 DNAp), the simplest replication system, and R-loops. We demonstrate that a single R-loop can block replication, and the blockage is more pronounced when an RNA-DNA hybrid is on the non-template strand. We show that this asymmetry results from secondary structure formation on the non-template strand, which impedes the progression of Phi29 DNAp. We also show that G-quadruplex formation on the displaced single-stranded DNA in an R-loop enhances the replication stalling. Moreover, we observe the collision between Phi29 DNAp and RNA transcripts synthesized by T7 RNA polymerase (T7 RNAp). RNA transcripts cause more stalling because of the presence of T7 RNAp. Our work provides insights into how R-loops impede DNA replication at single-molecule resolution.


Asunto(s)
Replicación del ADN , Estructuras R-Loop , Imagen Individual de Molécula , ARN/química , ADN Polimerasa Dirigida por ADN/metabolismo
3.
Nucleic Acids Res ; 51(15): 7936-7950, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37378431

RESUMEN

Replication protein A (RPA), a eukaryotic single-stranded DNA (ssDNA) binding protein, dynamically interacts with ssDNA in different binding modes and plays essential roles in DNA metabolism such as replication, repair, and recombination. RPA accumulation on ssDNA due to replication stress triggers the DNA damage response (DDR) by activating the ataxia telangiectasia and RAD3-related (ATR) kinase, which phosphorylates itself and downstream DDR factors, including RPA. We recently reported that the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF), a neuronal protein associated with Kallmann syndrome, promotes RPA32 phosphorylation via ATR upon replication stress. However, how NSMF enhances ATR-mediated RPA32 phosphorylation remains elusive. Here, we demonstrate that NSMF colocalizes and physically interacts with RPA at DNA damage sites in vivo and in vitro. Using purified RPA and NSMF in biochemical and single-molecule assays, we find that NSMF selectively displaces RPA in the more weakly bound 8- and 20-nucleotide binding modes from ssDNA, allowing the retention of more stable RPA molecules in the 30-nt binding mode. The 30-nt binding mode of RPA enhances RPA32 phosphorylation by ATR, and phosphorylated RPA becomes stabilized on ssDNA. Our findings provide new mechanistic insight into how NSMF facilitates the role of RPA in the ATR pathway.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteína de Replicación A , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Replicación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN/genética , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/metabolismo , Humanos
4.
Nucleic Acids Res ; 51(2): 631-649, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36594163

RESUMEN

TRAIP is a key factor involved in the DNA damage response (DDR), homologous recombination (HR) and DNA interstrand crosslink (ICL) repair. However, the exact functions of TRAIP in these processes in mammalian cells are not fully understood. Here we identify the zinc finger protein 212, ZNF212, as a novel binding partner for TRAIP and find that ZNF212 colocalizes with sites of DNA damage. The recruitment of TRAIP or ZNF212 to sites of DNA damage is mutually interdependent. We show that depletion of ZNF212 causes defects in the DDR and HR-mediated repair in a manner epistatic to TRAIP. In addition, an epistatic analysis of Zfp212, the mouse homolog of human ZNF212, in mouse embryonic stem cells (mESCs), shows that it appears to act upstream of both the Neil3 and Fanconi anemia (FA) pathways of ICLs repair. We find that human ZNF212 interacted directly with NEIL3 and promotes its recruitment to ICL lesions. Collectively, our findings identify ZNF212 as a new factor involved in the DDR, HR-mediated repair and ICL repair though direct interaction with TRAIP.


Asunto(s)
Reparación del ADN , Anemia de Fanconi , Animales , Ratones , Humanos , Reparación del ADN/genética , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genómica , Anemia de Fanconi/genética , Mamíferos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas del Tejido Nervioso/genética
5.
Nucleic Acids Res ; 51(11): 5584-5602, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37140056

RESUMEN

DNA double-strand break (DSB) repair via homologous recombination is initiated by end resection. The extent of DNA end resection determines the choice of the DSB repair pathway. Nucleases for end resection have been extensively studied. However, it is still unclear how the potential DNA structures generated by the initial short resection by MRE11-RAD50-NBS1 are recognized and recruit proteins, such as EXO1, to DSB sites to facilitate long-range resection. We found that the MSH2-MSH3 mismatch repair complex is recruited to DSB sites through interaction with the chromatin remodeling protein SMARCAD1. MSH2-MSH3 facilitates the recruitment of EXO1 for long-range resection and enhances its enzymatic activity. MSH2-MSH3 also inhibits access of POLθ, which promotes polymerase theta-mediated end-joining (TMEJ). Collectively, we present a direct role of MSH2-MSH3 in the initial stages of DSB repair by promoting end resection and influencing the DSB repair pathway by favoring homologous recombination over TMEJ.


Asunto(s)
Reparación del ADN , Exodesoxirribonucleasas , Proteína 2 Homóloga a MutS , Proteína 3 Homóloga de MutS , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Exodesoxirribonucleasas/metabolismo , Recombinación Homóloga , Proteína 2 Homóloga a MutS/metabolismo , Humanos , Línea Celular , ADN Helicasas/metabolismo , Proteína 3 Homóloga de MutS/metabolismo
6.
EMBO Rep ; 23(7): e53492, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35582821

RESUMEN

Genome instability is one of the leading causes of gastric cancers. However, the mutational landscape of driver genes in gastric cancer is poorly understood. Here, we investigate somatic mutations in 25 Korean gastric adenocarcinoma patients using whole-exome sequencing and show that PWWP2B is one of the most frequently mutated genes. PWWP2B mutation correlates with lower cancer patient survival. We find that PWWP2B has a role in DNA double-strand break repair. As a nuclear protein, PWWP2B moves to sites of DNA damage through its interaction with UHRF1. Depletion of PWWP2B enhances cellular sensitivity to ionizing radiation (IR) and impairs IR-induced foci formation of RAD51. PWWP2B interacts with MRE11 and participates in homologous recombination via promoting DNA end-resection. Taken together, our data show that PWWP2B facilitates the recruitment of DNA repair machinery to sites of DNA damage and promotes HR-mediated DNA double-strand break repair. Impaired PWWP2B function might thus cause genome instability and promote gastric cancer development.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Neoplasias Gástricas , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Inestabilidad Genómica , Recombinación Homóloga , Humanos , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Neoplasias Gástricas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Nucleic Acids Res ; 49(1): 269-284, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33313823

RESUMEN

R-loops are three-stranded, RNA-DNA hybrid, nucleic acid structures produced due to inappropriate processing of newly transcribed RNA or transcription-replication collision (TRC). Although R-loops are important for many cellular processes, their accumulation causes genomic instability and malignant diseases, so these structures are tightly regulated. It was recently reported that R-loop accumulation is resolved by methyltransferase-like 3 (METTL3)-mediated m6A RNA methylation under physiological conditions. However, it remains unclear how R-loops in the genome are recognized and induce resolution signals. Here, we demonstrate that tonicity-responsive enhancer binding protein (TonEBP) recognizes R-loops generated by DNA damaging agents such as ultraviolet (UV) or camptothecin (CPT). Single-molecule imaging and biochemical assays reveal that TonEBP preferentially binds a R-loop via both 3D collision and 1D diffusion along DNA in vitro. In addition, we find that TonEBP recruits METTL3 to R-loops through the Rel homology domain (RHD) for m6A RNA methylation. We also show that TonEBP recruits RNaseH1 to R-loops through a METTL3 interaction. Consistent with this, TonEBP or METTL3 depletion increases R-loops and reduces cell survival in the presence of UV or CPT. Collectively, our results reveal an R-loop resolution pathway by TonEBP and m6A RNA methylation by METTL3 and provide new insights into R-loop resolution processes.


Asunto(s)
Adenosina/análogos & derivados , Replicación del ADN/genética , Metiltransferasas/fisiología , Estructuras R-Loop/genética , Factores de Transcripción/fisiología , Adenosina/metabolismo , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Aductos de ADN/metabolismo , Daño del ADN , Difusión , Células HEK293 , Humanos , Metilación , Unión Proteica , Mapeo de Interacción de Proteínas , Estructuras R-Loop/efectos de la radiación , Ribonucleasa H/fisiología , Rayos Ultravioleta
8.
Mol Cell ; 54(5): 832-43, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24768536

RESUMEN

In physiological settings, DNA translocases will encounter DNA-bound proteins, which must be dislodged or bypassed to allow continued translocation. FtsK is a bacterial translocase that promotes chromosome dimer resolution and decatenation by activating XerCD-dif recombination. To better understand how translocases act in crowded environments, we used single-molecule imaging to visualize FtsK in real time as it collided with other proteins. We show that FtsK can push, evict, and even bypass DNA-bound proteins. The primary factor dictating the outcome of collisions was the relative affinity of the proteins for their specific binding sites. Importantly, protein-protein interactions between FtsK and XerD help prevent removal of XerCD from DNA by promoting rapid reversal of FtsK. Finally, we demonstrate that RecBCD always overwhelms FtsK when these two motor proteins collide while traveling along the same DNA molecule, indicating that RecBCD is capable of exerting a much greater force than FtsK when translocating along DNA.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas de la Membrana/química , Bacteriófago lambda/genética , Sitios de Unión , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Viral/química , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Transporte de Proteínas
9.
FASEB J ; 34(1): 1270-1287, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914593

RESUMEN

Dysregulation of the adipo-osteogenic differentiation balance of mesenchymal stem cells (MSCs), which are common progenitor cells of adipocytes and osteoblasts, has been associated with many pathophysiologic diseases, such as obesity, osteopenia, and osteoporosis. Growing evidence suggests that lipid metabolism is crucial for maintaining stem cell homeostasis and cell differentiation; however, the detailed underlying mechanisms are largely unknown. Here, we demonstrate that glucosylceramide (GlcCer) and its synthase, glucosylceramide synthase (GCS), are key determinants of MSC differentiation into adipocytes or osteoblasts. GCS expression was increased during adipogenesis and decreased during osteogenesis. Targeting GCS using RNA interference or a chemical inhibitor enhanced osteogenesis and inhibited adipogenesis by controlling the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ). Treatment with GlcCer sufficiently rescued adipogenesis and inhibited osteogenesis in GCS knockdown MSCs. Mechanistically, GlcCer interacted directly with PPARγ through A/B domain and synergistically enhanced rosiglitazone-induced PPARγ activation without changing PPARγ expression, thereby treatment with exogenous GlcCer increased adipogenesis and inhibited osteogenesis. Animal studies demonstrated that inhibiting GCS reduced adipocyte formation in white adipose tissues under normal chow diet and high-fat diet feeding and accelerated bone repair in a calvarial defect model. Taken together, our findings identify a novel lipid metabolic regulator for the control of MSC differentiation and may have important therapeutic implications.


Asunto(s)
Adipocitos/metabolismo , Diferenciación Celular , Glucosilceramidas/metabolismo , Glucosiltransferasas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , PPAR gamma/metabolismo , Animales , Glucosilceramidas/genética , Glucosiltransferasas/genética , Humanos , Ratones , PPAR gamma/genética
10.
Nucleic Acids Res ; 47(16): 8337-8347, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31372632

RESUMEN

DNA repair is critical for maintaining genomic integrity. Finding DNA lesions initiates the entire repair process. In human nucleotide excision repair (NER), XPC-RAD23B recognizes DNA lesions and recruits downstream factors. Although previous studies revealed the molecular features of damage identification by the yeast orthologs Rad4-Rad23, the dynamic mechanisms by which human XPC-RAD23B recognizes DNA defects have remained elusive. Here, we directly visualized the motion of XPC-RAD23B on undamaged and lesion-containing DNA using high-throughput single-molecule imaging. We observed three types of one-dimensional motion of XPC-RAD23B along DNA: diffusive, immobile and constrained. We found that consecutive AT-tracks led to increase in proteins with constrained motion. The diffusion coefficient dramatically increased according to ionic strength, suggesting that XPC-RAD23B diffuses along DNA via hopping, allowing XPC-RAD23B to bypass protein obstacles during the search for DNA damage. We also examined how XPC-RAD23B identifies cyclobutane pyrimidine dimers (CPDs) during diffusion. XPC-RAD23B makes futile attempts to bind to CPDs, consistent with low CPD recognition efficiency. Moreover, XPC-RAD23B binds CPDs in biphasic states, stable for lesion recognition and transient for lesion interrogation. Taken together, our results provide new insight into how XPC-RAD23B searches for DNA lesions in billions of base pairs in human genome.


Asunto(s)
Enzimas Reparadoras del ADN/química , Reparación del ADN , ADN Viral/química , Proteínas de Unión al ADN/química , ADN/química , Dímeros de Pirimidina/química , Bacteriófago lambda/química , Bacteriófago lambda/genética , Sitios de Unión , ADN/genética , ADN/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Difusión , Humanos , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Concentración Osmolar , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Dímeros de Pirimidina/metabolismo , Imagen Individual de Molécula
11.
Biotechnol Bioeng ; 117(6): 1640-1648, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32162675

RESUMEN

DNA curtain is a high-throughput system, integrating a lipid bilayer, fluorescence imaging, and microfluidics to probe protein-DNA interactions in real-time and has provided in-depth understanding of DNA metabolism. Especially, the microfluidic platform of a DNA curtain is highly suitable for a biochip. In the DNA curtain, DNA molecules are aligned along chromium nanobarriers, which are fabricated on a slide surface, and visualized using an intercalating dye, YOYO-1. Although the chromium barriers confer precise geometric alignment of DNA, reuse of the slides is limited by wear of the barriers during cleaning. YOYO-1 is rapidly photobleached and causes photocleavage of DNA under continuous laser illumination, restricting DNA observation to a brief time window. To address these challenges, we developed a new nanopatterned slide, upon which carved nanotrenches serve as diffusion barriers. The nanotrenches were robust under harsh cleaning conditions, facilitating the maintenance of surface cleanliness that is essential to slide reuse. We also stained DNA with a fluorescent protein with a DNA-binding motif, fluorescent protein-DNA binding peptide (FP-DBP). FP-DBP was slowly photobleached and did not cause DNA photocleavage. This new DNA curtain system enables a more stable and repeatable investigation of real-time protein-DNA interactions and will serve as a good platform for lab-on-a-chip.


Asunto(s)
Benzoxazoles/análisis , Proteínas de Unión al ADN/análisis , ADN/análisis , Colorantes Fluorescentes/análisis , Nanoestructuras/química , Compuestos de Quinolinio/análisis , Imagen Individual de Molécula/métodos , Membrana Dobles de Lípidos/química , Imagen Óptica/métodos
12.
J Biol Chem ; 292(26): 11125-11135, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28476890

RESUMEN

Homologous recombination plays key roles in double-strand break repair, rescue, and repair of stalled replication forks and meiosis. The broadly conserved Rad51/RecA family of recombinases catalyzes the DNA strand invasion reaction that takes place during homologous recombination. We have established single-stranded (ss)DNA curtain assays for measuring individual base triplet steps during the early stages of strand invasion. Here, we examined how base triplet stepping by RecA, Rad51, and Dmc1 is affected by DNA sequence imperfections, such as single and multiple mismatches, abasic sites, and single nucleotide insertions. Our work reveals features of base triplet stepping that are conserved among these three phylogenetic lineages of the Rad51/RecA family and also reveals lineage-specific behaviors reflecting properties that are unique to each recombinase. These findings suggest that Dmc1 is tolerant of single mismatches, multiple mismatches, and even abasic sites, whereas RecA and Rad51 are not. Interestingly, the presence of single nucleotide insertion abolishes recognition of an adjacent base triplet by all three recombinases. On the basis of these findings, we describe models for how sequence imperfections may affect base triplet recognition by Rad51/RecA family members, and we discuss how these models and our results may relate to the different biological roles of RecA, Rad51, and Dmc1.


Asunto(s)
Proteínas de Ciclo Celular/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Escherichia coli/enzimología , Modelos Químicos , Recombinasa Rad51/química , Rec A Recombinasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Proteínas de Ciclo Celular/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Recombinasa Rad51/metabolismo , Rec A Recombinasas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Biol Chem ; 291(42): 22218-22230, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27587394

RESUMEN

Homologous recombination is an important DNA repair pathway that plays key roles in maintaining genome stability. Escherichia coli RecA is an ATP-dependent DNA-binding protein that catalyzes the DNA strand exchange reactions in homologous recombination. RecA assembles into long helical filaments on single-stranded DNA, and these presynaptic complexes are responsible for locating and pairing with a homologous duplex DNA. Recent single molecule studies have provided new insights into RecA behavior, but the potential influence of ATP in the reactions remains poorly understood. Here we examine how ATP influences the ability of the RecA presynaptic complex to interact with homologous dsDNA. We demonstrate that over short time regimes, RecA presynaptic complexes sample heterologous dsDNA similarly in the presence of either ATP or ATPγS, suggesting that initial interactions do not depend on ATP hydrolysis. In addition, RecA stabilizes pairing intermediates in three-base steps, and stepping energetics is seemingly unaltered in the presence of ATP. However, the overall dissociation rate of these paired intermediates with ATP is ∼4-fold higher than with ATPγS. These experiments suggest that ATP plays an unanticipated role in promoting the turnover of captured duplex DNA intermediates as RecA attempts to align homologous sequences during the early stages of recombination.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Rec A Recombinasas/metabolismo , Recombinación Genética , Adenosina Trifosfato/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Rec A Recombinasas/química , Rec A Recombinasas/genética
14.
Proc Natl Acad Sci U S A ; 110(24): 9752-7, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23716666

RESUMEN

Formins promote processive elongation of actin filaments for cytokinetic contractile rings and other cellular structures. In vivo, these structures are exposed to tension, but the effect of tension on these processes was unknown. Here we used single-molecule imaging to investigate the effects of tension on actin polymerization mediated by yeast formin Bni1p. Small forces on the filaments dramatically slowed formin-mediated polymerization in the absence of profilin, but resulted in faster polymerization in the presence of profilin. We propose that force shifts the conformational equilibrium of the end of a filament associated with formin homology 2 domains toward the closed state that precludes polymerization, but that profilin-actin associated with formin homology 1 domains reverses this effect. Thus, physical forces strongly influence actin assembly by formin Bni1p.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Polimerizacion , Profilinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/química , Algoritmos , Proteínas de Ciclo Celular/química , Cinética , Proteínas de Microfilamentos/química , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Profilinas/química , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Estrés Mecánico , Factores de Tiempo
15.
Proc Natl Acad Sci U S A ; 109(17): 6531-6, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22493241

RESUMEN

FtsK is a hexameric DNA translocase that participates in the final stages of bacterial chromosome segregation. Here we investigate the DNA-binding and translocation activities of FtsK in real time by imaging fluorescently tagged proteins on nanofabricated curtains of DNA. We show that FtsK preferentially loads at 8-bp KOPS (FtsK Orienting Polar Sequences) sites and that loading is enhanced in the presence of ADP. We also demonstrate that FtsK locates KOPS through a mechanism that does not involve extensive 1D diffusion at the scale of our resolution. Upon addition of ATP, KOPS-bound FtsK translocates in the direction dictated by KOPS polarity, and once FtsK has begun translocating it does not rerecognize KOPS from either direction. However, FtsK can abruptly change directions while translocating along DNA independent of KOPS, suggesting that the ability to reorient on DNA does not arise from DNA sequence-specific effects. Taken together, our data support a model in which FtsK locates KOPS through random collisions, preferentially engages KOPS in the ADP-bound state, translocates in the direction dictated by the polar orientation of KOPS, and is incapable of recognizing KOPS while translocating along DNA.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Conformación de Ácido Nucleico
16.
DNA Repair (Amst) ; 133: 103612, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128155

RESUMEN

The demand for direct observation of biomolecular interactions provides new insights into the molecular mechanisms underlying many biological processes. Single-molecule imaging techniques enable real-time visualization of individual biomolecules, providing direct observations of protein machines. Various single-molecule imaging techniques have been developed and have contributed to breakthroughs in biological research. One such technique is the DNA curtain, a novel, high-throughput, single-molecule platform that integrates lipid fluidity, nano-fabrication, microfluidics, and fluorescence imaging. Many DNA metabolic reactions, such as replication, transcription, and chromatin dynamics, have been studied using DNA curtains. In particular, the DNA curtain platform has been intensively applied in investigating the molecular details of DNA repair processes. This article reviews DNA curtain techniques and their applications for imaging DNA repair proteins.


Asunto(s)
Reparación del ADN , ADN , ADN/metabolismo , Cromatina , Nanotecnología/métodos
17.
Leukemia ; 38(6): 1353-1364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38514771

RESUMEN

DEAD box helicase 41 (DDX41) mutations are the most prevalent predisposition to familial myelodysplastic syndrome (MDS). However, the precise roles of these variants in the pathogenesis of MDS have yet to be elucidated. Here, we discovered a novel mechanism by which DDX41 contributes to R-loop-induced DNA damage responses (DDR) in cooperation with the m6A-METTL complex (MAC) and YTHDC1 using DDX41 knockout (KO) and DDX41 knock-in (KI, R525H, Y259C) cell lines as well as primary samples from MDS patients. Compared to wild type (WT), DDX41 KO and KI led to increased levels of m6A RNA methylated R-loop. Interestingly, we found that DDX41 regulates m6A/R-loop levels by interacting with MAC components. Further, DDX41 promoted the recruitment of YTHDC1 to R-loops by promoting the binding between METTL3 and YTHDC1, which was dysregulated in DDX41-deficient cells, contributing to genomic instability. Collectively, we demonstrated that DDX41 plays a key role in the physiological control of R-loops in cooperation with MAC and YTHDC1. These findings provide novel insights into how defects in DDX41 influence MDS pathogenesis and suggest potential therapeutic targets for the treatment of MDS.


Asunto(s)
ARN Helicasas DEAD-box , Metiltransferasas , Mutación , Síndromes Mielodisplásicos , Factores de Empalme de ARN , Humanos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Estructuras R-Loop , Daño del ADN , Unión Proteica , Proteínas del Tejido Nervioso
18.
Anal Chem ; 84(18): 7613-7, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22946619

RESUMEN

We have established a single-molecule imaging experimental platform called "DNA curtains" in which DNA molecules tethered to a lipid bilayer are organized into patterns at nanofabricated metallic barriers on the surface of a microfluidic sample chamber. This technology has wide applications for real-time single-molecule imaging of protein-nucleic acid interactions. Here, we demonstrate that DNA curtains can also be made from hydrogen silsesquioxane (HSQ). HSQ offers important advantages over metallic barriers because it can be lithographically patterned directly onto fused silica slides without any requirement for further processing steps, thereby offering the potential for rapid prototype development and/or scale up for manufacturing.


Asunto(s)
ADN/química , Lípidos/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Compuestos de Organosilicio/química , ADN/metabolismo , Difusión , Membrana Dobles de Lípidos/metabolismo , Dióxido de Silicio/química
19.
Biochem Biophys Res Commun ; 426(4): 565-70, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22967893

RESUMEN

We report a new approach to probing DNA-protein interactions by combining optical tweezers with a high-throughput DNA curtains technique. Here we determine the forces required to remove the individual lipid-anchored DNA molecules from the bilayer. We demonstrate that DNA anchored to the bilayer through a single biotin-streptavidin linkage withstands ∼20pN before being pulled free from the bilayer, whereas molecules anchored to the bilayer through multiple attachment points can withstand ⩾65pN; access to this higher force regime is sufficient to probe the responses of protein-DNA interactions to force changes. As a proof-of-principle, we concurrently visualized DNA-bound fluorescently-tagged RNA polymerase while simultaneously stretching the DNA molecules. This work presents a step towards a powerful experimental platform that will enable concurrent visualization of DNA curtains while applying defined forces through optical tweezers.


Asunto(s)
ADN/química , Microscopía Fluorescente/métodos , Pinzas Ópticas , Proteínas/química , ARN Polimerasas Dirigidas por ADN/química , Membrana Dobles de Lípidos/química , Unión Proteica
20.
Front Bioeng Biotechnol ; 10: 973314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185427

RESUMEN

Advances in single-molecule techniques have uncovered numerous biological secrets that cannot be disclosed by traditional methods. Among a variety of single-molecule methods, single-molecule fluorescence imaging techniques enable real-time visualization of biomolecular interactions and have allowed the accumulation of convincing evidence. These techniques have been broadly utilized for studying DNA metabolic events such as replication, transcription, and DNA repair, which are fundamental biological reactions. In particular, DNA repair has received much attention because it maintains genomic integrity and is associated with diverse human diseases. In this review, we introduce representative single-molecule fluorescence imaging techniques and survey how each technique has been employed for investigating the detailed mechanisms underlying DNA repair pathways. In addition, we briefly show how live-cell imaging at the single-molecule level contributes to understanding DNA repair processes inside cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA