Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Annu Rev Biochem ; 80: 917-41, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21548780

RESUMEN

Innate immune receptors respond to common structural patterns in microbial molecules and are called pattern recognition receptors. Toll-like receptors (TLRs) play critical roles in the innate immune system by recognizing microbial lipids, carbohydrates, nucleic acids, and proteins. Precise definition of the ligand "pattern" of TLRs has been difficult to determine primarily owing to a lack of high-resolution structures. Recently, the structures of several TLR-ligand complexes and the intracellular signaling domains have been determined by X-ray crystallography. This new structural information, combined with extensive biochemical and immunological data accumulated over decades, sheds new light on ligand-recognition and -activation mechanisms. In this review, we summarize the TLR structures and discuss proposed ligand-recognition and -activation mechanisms.


Asunto(s)
Conformación Proteica , Receptores Toll-Like/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Humanos , Inmunidad Innata , Ligandos , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/química , Antígeno 96 de los Linfocitos/genética , Antígeno 96 de los Linfocitos/inmunología , Modelos Moleculares , Filogenia , Multimerización de Proteína , Receptores Toll-Like/clasificación , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología
2.
Immunity ; 46(1): 38-50, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27986454

RESUMEN

Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, binds Toll-like receptor 4 (TLR4)-MD2 complex and activates innate immune responses. LPS transfer to TLR4-MD2 is catalyzed by both LPS binding protein (LBP) and CD14. To define the sequential molecular interactions underlying this transfer, we reconstituted in vitro the entire LPS transfer process from LPS micelles to TLR4-MD2. Using electron microscopy and single-molecule approaches, we characterized the dynamic intermediate complexes for LPS transfer: LBP-LPS micelles, CD14-LBP-LPS micelle, and CD14-LPS-TLR4-MD2 complex. A single LBP molecule bound longitudinally to LPS micelles catalyzed multi-rounds of LPS transfer to CD14s that rapidly dissociated from LPB-LPS complex upon LPS transfer via electrostatic interactions. Subsequently, the single LPS molecule bound to CD14 was transferred to TLR4-MD2 in a TLR4-dependent manner. The definition of the structural determinants of the LPS transfer cascade to TLR4 may enable the development of targeted therapeutics for intervention in LPS-induced sepsis.


Asunto(s)
Proteínas de Fase Aguda/inmunología , Proteínas Portadoras/inmunología , Receptores de Lipopolisacáridos/inmunología , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Glicoproteínas de Membrana/inmunología , Receptor Toll-Like 4/inmunología , Animales , Humanos , Ratones , Microscopía Electrónica de Transmisión , Transducción de Señal/inmunología
3.
Molecules ; 28(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375202

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastation to human society through its high virulence, infectivity, and genomic mutations, which reduced the efficacy of vaccines. Here, we report the development of aptamers that effectively interfere with SARS-CoV-2 infection by targeting its spike protein, which plays a pivotal role in host cell entry of the virus through interaction with the viral receptor angiotensin-converting enzyme 2 (ACE2). To develop highly effective aptamers and to understand their mechanism in inhibiting viral infection, we determined the three-dimensional (3D) structures of aptamer/receptor-binding domain (RBD) complexes using cryogenic electron microscopy (cryo-EM). Moreover, we developed bivalent aptamers targeting two distinct regions of the RBD in the spike protein that directly interact with ACE2. One aptamer interferes with the binding of ACE2 by blocking the ACE2-binding site in RBD, and the other aptamer allosterically inhibits ACE2 by binding to a distinct face of RBD. Using the 3D structures of aptamer-RBD complexes, we minimized and optimized these aptamers. By combining the optimized aptamers, we developed a bivalent aptamer that showed a stronger inhibitory effect on virus infection than the component aptamers. This study confirms that the structure-based aptamer-design approach has a high potential in developing antiviral drugs against SARS-CoV-2 and other viruses.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sitios de Unión , Unión Proteica
4.
Immunity ; 39(4): 647-60, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24120359

RESUMEN

Lipopolysaccharide (LPS) binding protein (LBP) is an acute-phase protein that initiates an immune response after recognition of bacterial LPS. Here, we report the crystal structure of murine LBP at 2.9 Å resolution. Several structural differences were observed between LBP and the related bactericidal/permeability-increasing protein (BPI), and the LBP C-terminal domain contained a negatively charged groove and a hydrophobic "phenylalanine core." A frequent human LBP SNP (allelic frequency 0.08) affected this region, potentially generating a proteinase cleavage site. The mutant protein had a reduced binding capacity for LPS and lipopeptides. SNP carriers displayed a reduced cytokine response after in vivo LPS exposure and lower cytokine concentrations in pneumonia. In a retrospective trial, the LBP SNP was associated with increased mortality rates during sepsis and pneumonia. Thus, the structural integrity of LBP may be crucial for fighting infections efficiently, and future patient stratification might help to develop better therapeutic strategies.


Asunto(s)
Proteínas de Fase Aguda/química , Péptidos Catiónicos Antimicrobianos/química , Proteínas Sanguíneas/química , Proteínas Portadoras/química , Inmunidad Innata/genética , Lipopolisacáridos/química , Glicoproteínas de Membrana/química , Modelos Moleculares , Mutación , Polimorfismo de Nucleótido Simple , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Sitios de Unión , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Cristalografía por Rayos X , Genotipo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lipopolisacáridos/inmunología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Ratones , Unión Proteica , Estructura Terciaria de Proteína , Electricidad Estática , Homología Estructural de Proteína
5.
Proc Natl Acad Sci U S A ; 116(36): 17786-17791, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31371498

RESUMEN

Antibodies are indispensable tools in protein engineering and structural biology. Antibodies suitable for structural studies should recognize the 3-dimensional (3D) conformations of target proteins. Generating such antibodies and characterizing their complexes with antigens take a significant amount of time and effort. Here, we show that we can expand the application of well-characterized antibodies by "transplanting" the epitopes that they recognize to proteins with completely different structures and sequences. Previously, several antibodies have been shown to recognize the alpha-helical conformation of antigenic peptides. We demonstrate that these antibodies can be made to bind to a variety of unrelated "off-target" proteins by modifying amino acids in the preexisting alpha helices of such proteins. Using X-ray crystallography, we determined the structures of the engineered protein-antibody complexes. All of the antibodies bound to the epitope-transplanted proteins, forming accurately predictable structures. Furthermore, we showed that binding of these antihelix antibodies to the engineered target proteins can modulate their catalytic activities by trapping them in selected functional states. Our method is simple and efficient, and it will have applications in protein X-ray crystallography, electron microscopy, and nanotechnology.


Asunto(s)
Epítopos/química , Proteínas/química , Anticuerpos de Cadena Única/química , Cristalografía por Rayos X , Humanos , Conformación Proteica en Hélice alfa
6.
J Synchrotron Radiat ; 28(Pt 4): 1210-1215, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34212886

RESUMEN

BL-11C, a new protein crystallography beamline, is an in-vacuum undulator-based microfocus beamline used for macromolecular crystallography at the Pohang Accelerator Laboratory and it was made available to users in June 2017. The beamline is energy tunable in the range 5.0-20 keV to support conventional single- and multi-wavelength anomalous-dispersion experiments against a wide range of heavy metals. At the standard working energy of 12.659 keV, the monochromated beam is focused to 4.1 µm (V) × 8.5 µm (H) full width at half-maximum at the sample position and the measured photon flux is 1.3 × 1012 photons s-1. The experimental station is equipped with a Pilatus3 6M detector, a micro-diffractometer (MD2S) incorporating a multi-axis goniometer, and a robotic sample exchanger (CATS) with a dewar capacity of 90 samples. This beamline is suitable for structural determination of weakly diffracting crystalline substances, such as biomaterials, including protein, nucleic acids and their complexes. In addition, serial crystallography experiments for determining crystal structures at room temperature are possible. Herein, the current beamline characteristics, technical information for users and some recent scientific highlights are described.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Sustancias Macromoleculares/química , Proteínas/química , Radioisótopos de Carbono , Diseño de Equipo , Legionella/química , Muramidasa/química , Neisseria meningitidis/química , Elementos Estructurales de las Proteínas , Sincrotrones , Zymomonas/química
7.
RNA Biol ; 17(3): 325-334, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31852354

RESUMEN

Retinoic acid-inducible gene I (RIG-I) is responsible for innate immunity via the recognition of short double-stranded RNAs in the cytosol. With the clue that G-U wobble base pairs in the influenza A virus's RNA promoter region are responsible for RIG-I activation, we determined the complex structure of RIG-I ΔCARD and a short hairpin RNA with G-U wobble base pairs by X-ray crystallography. Interestingly, the overall helical backbone trace was not affected by the presence of the wobble base pairs; however, the base pair inclination and helical axis angle changed upon RIG-I binding. NMR spectroscopy revealed that RIG-I binding renders the flexible base pair of the influenza A virus's RNA promoter region between the two G-U wobble base pairs even more flexible. Binding to RNA with wobble base pairs resulted in a more flexible RIG-I complex. This flexible complex formation correlates with the entropy-favoured binding of RIG-I and RNA, which results in tighter binding affinity and RIG-I activation. This study suggests that the structure and dynamics of RIG-I are tailored to the binding of specific RNA sequences with different flexibility.


Asunto(s)
Proteína 58 DEAD Box/química , Proteína 58 DEAD Box/metabolismo , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Receptores Inmunológicos/química , Receptores Inmunológicos/metabolismo , Emparejamiento Base , Cristalografía por Rayos X , Entropía , Células HEK293 , Humanos , Hidrógeno/química , Interferón gamma/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Protones
8.
Methods ; 154: 136-142, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30261312

RESUMEN

Diabodies are bispecific antibody fragments that have two antigen binding Fv domains. They are unique among hundreds of different formats of bispecific antibodies because they are small and rigid enough to be crystallized. Diabodies are generated by connecting variable regions of heavy and light chains by a peptide linker. Because of the short length of the linker, intramolecular association of the variable regions is not allowed. Instead, the variable regions from the different peptide chains associate together, forming a dimeric complex with two antigen binding sites. Previous crystallographic studies of diabodies demonstrate the extraordinary structural diversity of diabodies. They have also shown that the relative orientation and interaction of the two Fv domains in diabodies have substantial flexibility due to instability of the Fv interface. Introduction of site specific mutations and disulfide bridges can reduce flexibility and therefore increase rigidity and predictability of the diabody structures. These stabilized diabodies will be useful for future application to structural biology and protein nanotechnology.


Asunto(s)
Anticuerpos Biespecíficos/metabolismo , Animales , Anticuerpos Biespecíficos/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica
9.
Nanomedicine ; 17: 223-235, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30695729

RESUMEN

Hemagglutinin (HA) displayed on a ferritin nano-cage has been shown to be effective in generating a potent immune response against a broad range of influenza infections. Here, we showed that conjugation of flagellin together with HA to the exterior surface of the ferritin cage greatly enhanced not only the humoral immune response in mice but also antigen-specific T cell responses that include Th1 cytokine secretion. The effect of flagellin remained essentially unchanged when the molar ratio of flagellin to HA was reduced from 1:1 to 1:3. Injection of the ferritin-HA-flagellin cage provided protection against lethal virus challenge in mice. We used a small immunoglobulin fragment VL12.3 as a convenient method for attaching HA and flagellin to the ferritin cage. This attachment method can be used for rapid screening of a variety of protein cages and nano-assemblies to identify the most suitable carrier and adjuvant proteins for the target antigen.


Asunto(s)
Adyuvantes Inmunológicos/química , Ferritinas/química , Flagelina/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Virus de la Influenza A/química , Salmonella typhimurium/química , Adyuvantes Inmunológicos/farmacología , Animales , Línea Celular , Femenino , Ferritinas/farmacología , Flagelina/farmacología , Glicoproteínas Hemaglutininas del Virus de la Influenza/farmacología , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Nanoestructuras/química
10.
Immunity ; 31(6): 873-84, 2009 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19931471

RESUMEN

Toll-like receptor 2 (TLR2) initiates potent immune responses by recognizing diacylated and triacylated lipopeptides. Its ligand specificity is controlled by whether it heterodimerizes with TLR1 or TLR6. We have determined the crystal structures of TLR2-TLR6-diacylated lipopeptide, TLR2-lipoteichoic acid, and TLR2-PE-DTPA complexes. PE-DTPA, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-diethylenetriaminepentaacetic acid, is a synthetic phospholipid derivative. Two major factors contribute to the ligand specificity of TLR2-TLR1 or TLR2-TLR6 heterodimers. First, the lipid channel of TLR6 is blocked by two phenylalanines. Simultaneous mutation of these phenylalanines made TLR2-TLR6 fully responsive not only to diacylated but also to triacylated lipopeptides. Second, the hydrophobic dimerization interface of TLR2-TLR6 is increased by 80%, which compensates for the lack of amide lipid interaction between the lipopeptide and TLR2-TLR6. The structures of the TLR2-lipoteichoic acid and the TLR2-PE-DTPA complexes demonstrate that a precise interaction pattern of the head group is essential for a robust immune response by TLR2 heterodimers.


Asunto(s)
Lipopéptidos/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 6/inmunología , Acilación , Animales , Sitios de Unión , Cristalografía por Rayos X , Anguila Babosa , Humanos , Ligandos , Lipopéptidos/química , Lipopolisacáridos/química , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Ratones , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/inmunología , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Ácidos Teicoicos/química , Ácidos Teicoicos/inmunología , Ácidos Teicoicos/metabolismo , Receptor Toll-Like 1/química , Receptor Toll-Like 1/inmunología , Receptor Toll-Like 2/química , Receptor Toll-Like 6/química
11.
Biochem Biophys Res Commun ; 494(3-4): 452-459, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29061303

RESUMEN

Evogliptin ((R)-4-((R)-3-amino-4-(2,4,5-trifluorophenyl)butanoyl)-3-(tert-butoxymethyl) piperazine-2-one)) is a highly potent selective inhibitor of dipeptidyl peptidase IV (DPP4) that was approved for the treatment of type 2 diabetes in South Korea. In this study, we report the crystal structures of Evogliptin, DA-12166, and DA-12228 (S,R diastereomer of Evogliptin) complexed to human DPP4. Analysis of both the structures and inhibitory activities suggests that the binding of the trifluorophenyl moiety in the S1 pocket and the piperazine-2-one moiety have hydrophobic interactions with Phe357 in the S2 extensive subsite, and that the multiple hydrogen bonds made by the (R)-ß-amine group in the S2 pocket and the contacts made by the (R)-tert-butyl group with Arg125 contribute to the high potency observed for Evogliptin.


Asunto(s)
Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Modelos Químicos , Modelos Moleculares , Piperazinas/química , Sitios de Unión , Activación Enzimática , Humanos , Unión Proteica
12.
Immunity ; 29(2): 182-91, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18701082

RESUMEN

Toll-like receptors (TLRs) play central roles in the innate immune response by recognizing conserved structural patterns in diverse microbial molecules. Here, we discuss ligand binding and activation mechanisms of the TLR family. Hydrophobic ligands of TLR1, TLR2, and TLR4 interact with internal protein pockets. In contrast, dsRNA, a hydrophilic ligand, interacts with the solvent-exposed surface of TLR3. Binding of agonistic ligands, lipopeptides or dsRNA, induces dimerization of the ectodomains of the various TLRs, forming dimers that are strikingly similar in shape. In these "m"-shaped complexes, the C termini of the extracellular domains of the TLRs converge in the middle. This observation suggests the hypothesis that dimerization of the extracellular domains forces the intracellular TIR domains to dimerize, and this initiates signaling by recruiting intracellular adaptor proteins.


Asunto(s)
Antígeno 96 de los Linfocitos/metabolismo , Estructura Terciaria de Proteína , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Animales , Sitios de Unión , Dimerización , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Receptores de Lipopolisacáridos/inmunología , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Antígeno 96 de los Linfocitos/inmunología , Receptores de Interleucina-1/metabolismo
13.
J Biol Chem ; 290(26): 16393-402, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25957408

RESUMEN

Although it was only recently identified as a second messenger, c-di-AMP was found to have fundamental importance in numerous bacterial functions such as ion transport. The potassium transporter protein, KtrA, was identified as a c-di-AMP receptor. However, the co-crystallization of c-di-AMP with the protein has not been studied. Here, we determined the crystal structure of the KtrA RCK_C domain in complex with c-di-AMP. The c-di-AMP nucleotide, which adopts a U-shaped conformation, is bound at the dimer interface of RCK_C close to helices α3 and α4. c-di-AMP interacts with KtrA RCK_C mainly by forming hydrogen bonds and hydrophobic interactions. c-di-AMP binding induces the contraction of the dimer, bringing the two monomers of KtrA RCK_C into close proximity. The KtrA RCK_C was able to interact with only c-di-AMP, but not with c-di-GMP, 3',3-cGAMP, ATP, and ADP. The structure of the KtrA RCK_C domain and c-di-AMP complex would expand our understanding about the mechanism of inactivation in Ktr transporters governed by c-di-AMP.


Asunto(s)
Bacillus subtilis/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Staphylococcus aureus/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/genética , Fosfatos de Dinucleósidos/química , Modelos Moleculares , Potasio/metabolismo , Estructura Terciaria de Proteína , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
14.
Proc Natl Acad Sci U S A ; 110(32): 13014-9, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23878241

RESUMEN

The activity and morphology of mitochondria are maintained by dynamic fusion and fission processes regulated by a group of proteins residing in, or attached to, their inner and outer membranes. Hypoxia-induced gene domain protein-1a (Higd-1a)/HIMP1-a/HIG1, a mitochondrial inner membrane protein, plays a role in cell survival under hypoxic conditions. In the present study, we showed that Higd-1a depletion resulted in mitochondrial fission, depletion of mtDNA, disorganization of cristae, and growth retardation. We demonstrated that Higd-1a functions by specifically binding to Optic atrophy 1 (Opa1), a key element in fusion of the inner membrane. In the absence of Higd-1a, Opa1 was cleaved, resulting in the loss of its long isoforms and accumulation of small soluble forms. The small forms of Opa1 do not interact with Higd-1a, suggesting that a part of Opa1 in or proximal to the membrane is required for that interaction. Opa1 cleavage, mitochondrial fission, and cell death induced by dissipation of the mitochondrial membrane potential were significantly inhibited by ectopic expression of Higd-1a. Furthermore, growth inhibition due to Higd-1a depletion could be overcome by overexpression of a noncleavable form of Opa1. Collectively, our observations demonstrate that Higd-1a inhibits Opa1 cleavage and is required for mitochondrial fusion by virtue of its interaction with Opa1.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/metabolismo , Adenosina Trifosfato/metabolismo , Western Blotting , GTP Fosfohidrolasas/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Potencial de la Membrana Mitocondrial/genética , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas de Neoplasias/genética , Unión Proteica , Interferencia de ARN
15.
Proc Natl Acad Sci U S A ; 110(30): E2829-37, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23832782

RESUMEN

Pathogenic and commensal bacteria that experience limited nutrient availability in their host have evolved sophisticated systems to catabolize the mucin sugar N-acetylneuraminic acid, thereby facilitating their survival and colonization. The correct function of the associated catabolic machinery is particularly crucial for the pathogenesis of enteropathogenic bacteria during infection, although the molecular mechanisms involved with the regulation of the catabolic machinery are unknown. This study reports the complex structure of NanR, a repressor of the N-acetylneuraminate (nan) genes responsible for N-acetylneuraminic acid catabolism, and its regulatory ligand, N-acetylmannosamine 6-phosphate (ManNAc-6P), in the human pathogenic bacterium Vibrio vulnificus. Structural studies combined with electron microscopic, biochemical, and in vivo analysis demonstrated that NanR forms a dimer in which the two monomers create an arched tunnel-like DNA-binding space, which contains positively charged residues that interact with the nan promoter. The interaction between the NanR dimer and DNA is alleviated by the ManNAc-6P-mediated relocation of residues in the ligand-binding domain of NanR, which subsequently relieves the repressive effect of NanR and induces the transcription of the nan genes. Survival studies in which mice were challenged with a ManNAc-6P-binding-defective mutant strain of V. vulnificus demonstrated that this relocation of NanR residues is critical for V. vulnificus pathogenesis. In summary, this study presents a model of the mechanism that regulates sialic acid catabolism via NanR in V. vulnificus.


Asunto(s)
Ácido N-Acetilneuramínico/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Vibrio vulnificus/metabolismo , Microscopía Electrónica , Modelos Moleculares
16.
Immunol Rev ; 250(1): 216-29, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23046132

RESUMEN

Toll-like receptors (TLRs) sense structural patterns in microbial molecules and initiate immune defense mechanisms. The structures of many extracellular and intracellular domains of TLRs have been studied in the last 10 years. These structures reveal the extraordinary diversity of TLR-ligand interactions. Some TLRs use internal hydrophobic pockets to bind bacterial ligands and others use solvent-exposed surfaces to bind hydrophilic ligands. The structures suggest a common activation mechanism for TLRs: ligand binding to extracellular domains induces dimerization of the intracellular domains and so activates intracellular signaling pathways. Recently, the structure of the death domain complex of one of the signaling adapters, myeloid differentiation factor 88 (MyD88), has been determined. This structure shows how aggregation of signaling adapters recruits downstream kinases. However, we are still far from a complete understanding of TLR activation. We need to study the structures of TLR7-10 in complex with their ligands. We also need to determine the structures of TLR-adapter aggregates to understand activation mechanisms and the specificity of the signaling pathways. Ultimately, we will have to study the structures of the complete TLR signaling complexes containing full-length receptors, ligands, signaling, and bridging adapters, and some of the downstream kinases to understand how TLRs sense microbial infections and activate immune responses against them.


Asunto(s)
Antígenos Bacterianos/química , Lipopolisacáridos/química , Factor 88 de Diferenciación Mieloide/química , Linfocitos T/inmunología , Receptores Toll-Like/química , Variación Antigénica , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Lipopolisacáridos/inmunología , Modelos Moleculares , Factor 88 de Diferenciación Mieloide/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Transducción de Señal , Especificidad del Receptor de Antígeno de Linfocitos T , Linfocitos T/microbiología , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo
17.
Nature ; 458(7242): 1191-5, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19252480

RESUMEN

The lipopolysaccharide (LPS) of Gram negative bacteria is a well-known inducer of the innate immune response. Toll-like receptor (TLR) 4 and myeloid differentiation factor 2 (MD-2) form a heterodimer that recognizes a common 'pattern' in structurally diverse LPS molecules. To understand the ligand specificity and receptor activation mechanism of the TLR4-MD-2-LPS complex we determined its crystal structure. LPS binding induced the formation of an m-shaped receptor multimer composed of two copies of the TLR4-MD-2-LPS complex arranged symmetrically. LPS interacts with a large hydrophobic pocket in MD-2 and directly bridges the two components of the multimer. Five of the six lipid chains of LPS are buried deep inside the pocket and the remaining chain is exposed to the surface of MD-2, forming a hydrophobic interaction with the conserved phenylalanines of TLR4. The F126 loop of MD-2 undergoes localized structural change and supports this core hydrophobic interface by making hydrophilic interactions with TLR4. Comparison with the structures of tetra-acylated antagonists bound to MD-2 indicates that two other lipid chains in LPS displace the phosphorylated glucosamine backbone by approximately 5 A towards the solvent area. This structural shift allows phosphate groups of LPS to contribute to receptor multimerization by forming ionic interactions with a cluster of positively charged residues in TLR4 and MD-2. The TLR4-MD-2-LPS structure illustrates the remarkable versatility of the ligand recognition mechanisms employed by the TLR family, which is essential for defence against diverse microbial infection.


Asunto(s)
Lipopolisacáridos/química , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/química , Antígeno 96 de los Linfocitos/inmunología , Receptor Toll-Like 4/química , Receptor Toll-Like 4/inmunología , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Relación Estructura-Actividad
18.
J Extracell Vesicles ; 12(5): e12322, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37186457

RESUMEN

Membrane-bound vesicles such as extracellular vesicles (EVs) can function as biochemical effectors on target cells. Docking of the vesicles onto recipient plasma membranes depends on their interaction with cell-surface proteins, but a generalizable technique that can quantitatively observe these vesicle-protein interactions (VPIs) is lacking. Here, we describe a fluorescence microscopy that measures VPIs between single vesicles and cell-surface proteins, either in a surface-tethered or in a membrane-embedded state. By employing cell-derived vesicles (CDVs) and intercellular adhesion molecule-1 (ICAM-1) as a model system, we found that integrin-driven VPIs exhibit distinct modes of affinity depending on vesicle origin. Controlling the surface density of proteins also revealed a strong support from a tetraspanin protein CD9, with a critical dependence on molecular proximity. An adsorption model accounting for multiple protein molecules was developed and captured the features of density-dependent cooperativity. We expect that VPI imaging will be a useful tool to dissect the molecular mechanisms of vesicle adhesion and uptake, and to guide the development of therapeutic vesicles.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Comunicación Celular , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo
19.
Cancer Res Commun ; 3(1): 80-96, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36968220

RESUMEN

Tumor-associated macrophages (TAM) are involved in tumor progression, metastasis, and immunosuppression. Because TAMs are highly plastic and could alter their phenotypes to proinflammatory M1 in response to environmental stimuli, reeducating TAMs has emerged as a promising approach to overcoming the challenges of solid cancer treatment. This study investigated the effect of IL9 on macrophage M1 polarization and verified its antitumor potential to retrain TAMs and promote chemokine secretion. We demonstrated that IL9 stimulated macrophage proliferation and polarized them toward the proinflammatory M1 phenotype in an IFNγ-dependent manner. Tumor-localized IL9 also polarized TAMs toward M1 in vivo and made them release CCL3/4 and CXCL9/10 to recruit antitumor immune cells, including T and natural killer cells, into the tumor microenvironment. Furthermore, peritoneal treatment with recombinant IL9 delayed the growth of macrophage-enriched B16F10 melanoma and 4T1 breast cancer in syngeneic mice, although IL9 treatment did not reduce tumor growth in the absence of macrophage enrichment. These results demonstrate the efficacy of IL9 in macrophage polarization to trigger antitumor immunity. Significance: These findings clarified the effect of IL9 on macrophage M1 polarization and verified its antitumor potential through retraining TAMs and chemokine secretion.


Asunto(s)
Interleucina-9 , Melanoma , Ratones , Animales , Interleucina-9/farmacología , Macrófagos , Melanoma/patología , Activación de Macrófagos , Quimiocinas/farmacología , Microambiente Tumoral
20.
J Biol Chem ; 286(13): 11226-35, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21285457

RESUMEN

CD40 is a tumor necrosis factor receptor (TNFR) family protein that plays an important role in B cell development. CD154/CD40L is the physiological ligand of CD40. We have determined the crystal structure of the CD40-CD154 complex at 3.5 Å resolution. The binding site of CD40 is located in a crevice formed between two CD154 subunits. Charge complementarity plays a critical role in the CD40-CD154 interaction. Some of the missense mutations found in hereditary hyper-IgM syndrome can be mapped to the CD40-CD154 interface. The CD40 interaction area of one of the CD154 subunits is twice as large as that of the other subunit forming the binding crevice. This is because cysteine-rich domain 3 (CRD3) of CD40 has a disulfide bridge in an unusual position that alters the direction of the ladder-like structure of CD40. The Ser(132) loop of CD154 is not involved in CD40 binding but its substitution significantly reduces p38- and ERK-dependent signaling by CD40, whereas JNK-dependent signaling is not affected. These findings suggest that ligand-induced di- or trimerization is necessary but not sufficient for complete activation of CD40.


Asunto(s)
Antígenos CD40 , Ligando de CD40 , Mutación Missense , Transducción de Señal/fisiología , Animales , Sitios de Unión , Antígenos CD40/química , Antígenos CD40/genética , Antígenos CD40/metabolismo , Ligando de CD40/química , Ligando de CD40/genética , Ligando de CD40/metabolismo , Cristalografía por Rayos X , Disulfuros , Células HEK293 , Humanos , Síndrome de Inmunodeficiencia con Hiper-IgM/genética , Síndrome de Inmunodeficiencia con Hiper-IgM/metabolismo , MAP Quinasa Quinasa 4/química , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA