Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Transl Med ; 21(1): 138, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36814269

RESUMEN

OBJECTIVES: To explore the possibility of kidney organoids generated using patient derived human induced pluripotent stem cells (hiPSC) for modeling of Fabry disease nephropathy (FDN). METHODS: First, we generated hiPSC line using peripheral blood mononuclear cells (PBMCs) from two male FD-patients with different types of GLA mutation: a classic type mutation (CMC-Fb-001) and a non-classic type (CMC-Fb-003) mutation. Second, we generated kidney organoids using wild-type (WT) hiPSC (WTC-11) and mutant hiPSCs (CMC-Fb-001 and CMC-Fb-003). We then compared alpha-galactosidase A (α-GalA) activity, deposition of globotriaosylceremide (Gb-3), and zebra body formation under electromicroscopy (EM). RESULTS: Both FD patients derived hiPSCs had the same mutations as those detected in PBMCs of patients, showing typical pluripotency markers, normal karyotyping, and successful tri-lineage differentiation. Kidney organoids generated using WT-hiPSC and both FD patients derived hiPSCs expressed typical nephron markers without structural deformity. Activity of α-GalA was decreased and deposition of Gb-3 was increased in FD patients derived hiPSCs and kidney organoids in comparison with WT, with such changes being far more significant in CMC-Fb-001 than in CMC-Fb-003. In EM finding, multi-lammelated inclusion body was detected in both CMC-Fb-001 and CMC-Fb-003 kidney organoids, but not in WT. CONCLUSIONS: Kidney organoids generated using hiPSCs from male FD patients might recapitulate the disease phenotype and represent the severity of FD according to the GLA mutation type.


Asunto(s)
Enfermedad de Fabry , Células Madre Pluripotentes Inducidas , Enfermedades Renales , Humanos , Masculino , Enfermedad de Fabry/genética , Leucocitos Mononucleares , Riñón , Diferenciación Celular , Organoides
2.
Sensors (Basel) ; 23(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37837017

RESUMEN

Among the construction processes of Portland cement concrete pavement (PCCP), the curing compound spraying process is one of the most important processes. If the curing compound spraying amount does not meet the standard or if the curing compound is not applied evenly, distresses occur at the early age of construction, ultimately causing deterioration in concrete pavement performance. The purpose of this study is to develop a real-time monitoring system for a curing compound spraying process based on the Internet of Things (IoT) and sensing technologies to improve the construction quality of concrete pavement. To achieve the goal of this research, we conducted various laboratory and field experiments. The curing compound spraying amount and sprayed status were measured and analyzed using flowmeters, image acquisition sensors, and an image processing program, and the data were provided to workers in real time and simultaneously transmitted to the IoT cloud to form a database. From this study, it is confirmed that the IoT-technology-based curing compound spraying amount and sprayed status monitoring systems can be successfully established to manage construction quality related to the curing of concrete pavement.

3.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769335

RESUMEN

The aim of this study is to explore the possibility of modeling Gitelman's disease (GIT) with human-induced pluripotent stem cell (hiPSC)-derived kidney organoids and to test whether gene correction using CRISPR/Cas9 can rescue the disease phenotype of GIT. To model GIT, we used the hiPSC line CMCi002 (CMC-GIT-001), generated using PBMCs from GIT patients with SLC12A3 gene mutation. Using the CRISPR-Cas9 system, we corrected CMC-GIT-001 mutations and hence generated CMC-GIT-001corr. Both hiPSCs were differentiated into kidney organoids, and we analyzed the GIT phenotype. The number of matured kidney organoids from the CMC-GIT-001corr group was significantly higher, 3.3-fold, than that of the CMC-GIT-001 group (12.2 ± 0.7/cm2 vs. 3.7 ± 0.2/cm2, p < 0.05). In qRT-PCR, performed using harvested kidney organoids, relative sodium chloride cotransporter (NCCT) mRNA levels (normalized to each iPSC) were increased in the CMC-GIT-001corr group compared with the CMC-GIT-001 group (4.1 ± 0.8 vs. 2.5 ± 0.2, p < 0.05). Consistently, immunoblot analysis revealed increased levels of NCCT protein, in addition to other tubular proteins markers, such as LTL and ECAD, in the CMC-GIT-001corr group compared to the CMC-GIT-001 group. Furthermore, we found that increased immunoreactivity of NCCT in the CMC-GIT-001corr group was colocalized with ECAD (a distal tubule marker) using confocal microscopy. Kidney organoids from GIT patient-derived iPSC recapitulated the Gitelman's disease phenotype, and correction of SLC12A3 mutation utilizing CRISPR-Cas9 technology provided therapeutic insight.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Pluripotentes Inducidas , Humanos , Sistemas CRISPR-Cas/genética , Miembro 3 de la Familia de Transportadores de Soluto 12 , Mutación , Riñón , Fenotipo , Organoides
4.
Sensors (Basel) ; 22(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36236486

RESUMEN

Flexible capacitive pressure sensors with a simple structure and low power consumption are attracting attention, owing to their wide range of applications in wearable electronic devices. However, it is difficult to manufacture pressure sensors with high sensitivity, wide detection range, and low detection limits. We developed a highly sensitive and flexible capacitive pressure sensor based on the porous Ecoflex, which has an aligned airgap structure and can be manufactured by simply using a mold and a micro-needle. The existence of precisely aligned airgap structures significantly improved the sensor sensitivity compared to other dielectric structures without airgaps. The proposed capacitive pressure sensor with an alignment airgap structure supports a wide range of working pressures (20-100 kPa), quick response time (≈100 ms), high operational stability, and low-pressure detection limit (20 Pa). Moreover, we also studied the application of pulse wave monitoring in wearable sensors, exhibiting excellent performance in wearable devices that detect pulse waves before and after exercise. The proposed pressure sensor is applicable in electronic skin and wearable medical assistive devices owing to its excellent functional features.


Asunto(s)
Dispositivos Electrónicos Vestibles , Monitoreo Fisiológico , Porosidad , Presión
5.
Microbiol Immunol ; 65(4): 178-188, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33565648

RESUMEN

Mycobacterium tuberculosis contains diverse immunologically active components. This study investigated the biological function of a newly identified component, Rv1654, with the potential to induce apoptosis in macrophages. Recombinant Rv1654 induced macrophage apoptosis in a caspase-9/3-dependent manner through the production of reactive oxygen species (ROS) and interaction with Toll-like receptor 4. In addition, Rv1654 induced the production of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 through the mitogen-activated protein kinase pathway. Furthermore, Rv1654-induced c-Jun N-terminal kinase (JNK) activation was inhibited by the ROS scavenger and Rv1654-induced apoptosis was inhibited by the JNK inhibitor. Moreover, it was found that treatment of macrophages with Rv1654 led to the loss of mitochondrial membrane potential, release of cytochrome c into the cytosol, and translocation of Bax into the mitochondria. Finally, Rv1654-mediated apoptosis was inhibited in macrophages transfected with Bax siRNA. These results suggest that Rv1654 induces macrophage apoptosis through a mitochondrial-dependent pathway and ROS-mediated JNK activation.


Asunto(s)
Apoptosis , Proteínas Bacterianas/inmunología , Macrófagos/microbiología , Mitocondrias , Mycobacterium tuberculosis , Caspasas , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/inmunología , Receptores Toll-Like
6.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34299161

RESUMEN

Prostaglandin E2 (PGE2) is an important biological mediator involved in the defense against Mycobacterium tuberculosis (Mtb) infection. Currently, there are no reports on the mycobacterial components that regulate PGE2 production. Previously, we have reported that RpfE-treated dendritic cells (DCs) effectively expanded the Th1 and Th17 cell responses simultaneously; however, the mechanism underlying Th1 and Th17 cell differentiation is unclear. Here, we show that PGE2 produced by RpfE-activated DCs via the MAPK and cyclooxygenase 2 signaling pathways induces Th1 and Th17 cell responses mainly via the EP4 receptor. Furthermore, mice administered intranasally with PGE2 displayed RpfE-induced antigen-specific Th1 and Th17 responses with a significant reduction in bacterial load in the lungs. Furthermore, the addition of optimal PGE2 amount to IL-2-IL-6-IL-23p19-IL-1ß was essential for promoting differentiation into Th1/Th17 cells with strong bactericidal activity. These results suggest that RpfE-matured DCs produce PGE2 that induces Th1 and Th17 cell differentiation with potent anti-mycobacterial activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Diferenciación Celular , Células Dendríticas/metabolismo , Dinoprostona/metabolismo , Mycobacterium tuberculosis/fisiología , Células TH1/citología , Células Th17/citología , Animales , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Femenino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Células TH1/inmunología , Células Th17/inmunología , Tuberculosis/inmunología , Tuberculosis/metabolismo , Tuberculosis/microbiología
7.
Cell Immunol ; 354: 104145, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32569876

RESUMEN

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen known to persist in host cells. The apoptotic response of macrophages serves as a defense mechanism to inhibit the growth of intracellular bacteria, the failure of which can favor the spread of the pathogen to new cells. However, the mycobacterial components that regulate cell death and the related underlying mechanisms remain poorly understood. In this study, we investigated protein Rv3261, isolated from an Mtb culture filtrate, for its apoptotic potential using multidimensional fractionation. Rv3261 was found to induce macrophage apoptosis through the caspase-3/-9-dependent pathway. Furthermore, the ROS-dependent JNK activation pathway was found to be critical in Rv3261-mediated apoptosis. Rv3261 inhibited the growth of intracellular Mtb, which was significantly abrogated by pre-treatment with the ROS scavenger N-acetylcysteine (NAC), suggesting that Rv3261-mediated apoptosis may act as a host defense response. These findings suggest that Rv3261 is involved in the apoptotic modulation of Mtb-infected macrophages.


Asunto(s)
Proteínas Bacterianas/metabolismo , Macrófagos/microbiología , Mitocondrias/metabolismo , Mycobacterium tuberculosis/fisiología , Acetilcisteína/farmacología , Animales , Apoptosis , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Procesos de Crecimiento Celular , Evasión Inmune , Inmunidad Innata , Espacio Intracelular , MAP Quinasa Quinasa 4/metabolismo , Macrófagos/inmunología , Ratones , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
8.
Sensors (Basel) ; 20(6)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188056

RESUMEN

Vehicle wheel alignment inspection is generally carried out using a computer vision-based system. Due to its inspection mechanism using four wheel centers, the computer vision-based system cannot be applied to the wheel alignment inspection of suspension module units. However, when a vehicle suspension module is being developed, there is no complete car ready for wheel alignment inspection even though it is a very important procedure for suspension property tests. This study proposes a novel and efficient way to inspect vehicle wheel alignment for suspension modules. Two laser modules and several mechanical jigs were employed for wheel alignment inspection, allowing the toe and camber angles of the suspension module to be measured. For accurate wheel alignment results, calibration of the laser modules was performed prior to the inspection. This calibration procedure adjusts the yaw and pitch angles of the laser module so that they can be orthogonal to the mounting jig. For the calibration, a novel method of using laser straightness was adopted and, consequently, 0.02 degrees of orthogonality was achieved. The wheel alignment inspection results were determined then verified using a vision system with two cameras. In order to use this vision system, two cameras were used and a new method of modifying the measurement mechanism was developed. According to the verification results, the proposed wheel alignment inspection provided very high measurement accuracy. The wheel alignment inspection mechanism proposed in this study can not only give very reliable results but also provide a cost-efficient method of inspecting the wheel alignment of suspension modules to automakers.

9.
Apoptosis ; 21(4): 459-72, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26842846

RESUMEN

Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.


Asunto(s)
Apoptosis/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Línea Celular , Citocromos c/metabolismo , Femenino , Interleucina-6/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium avium/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
10.
Antioxidants (Basel) ; 13(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38539873

RESUMEN

Developing new plant varieties plays a crucial role in competitiveness in the agricultural and food industries and enhancing food security. Daehong (DH) is a new variety of Crataegus pinnatifida Bunge (CP); however, its physiological functions and potential as a nutraceutical ingredient remain unknown. Here, the efficacy of DH on inflammatory bowel disease (IBD) was investigated using dextran sulfate sodium (DSS)-induced colitis mice, and its relative pharmacological effects were analyzed against CP. DH improved colitis-induced weight loss, colon shortening, and inflammatory responses and reduced intestinal permeability. The reactive oxygen species (ROS)-mediated necroptotic signal that triggers enterocyte cell death in DSS-induced colitis was effectively controlled by DH, attributed to epicatechin. DSS-induced gut dysbiosis was recovered into a healthy gut microbiome environment by DH, increasing beneficial bacteria, like Akkermansia muciniphila, and changing harmful bacteria, including Bacteroides vulgatus and Peptostreptococcaceae. DH shows potential as a dietary or pharmaceutical ingredient to promote gut health and to prevent and treat IBD.

11.
Biomed Pharmacother ; 175: 116770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772154

RESUMEN

Patients with inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn's disease (CD), often have concomitant mental disorders such as depression and anxiety. Therefore, a bidirectional approach involving the gut and brain axes is necessary for the prevention and treatment thereof. In this study, we explored the potential of Poncirus trifoliata extract (PT), traditionally known for its neuroprotective effects against gastrointestinal diseases, as a natural treatment agent for IBD in a dextran sulfate sodium (DSS)-induced colitis model. Oral administration of PT ameliorated weight loss and inflammatory responses in mice with DSS-induced colitis. Furthermore, PT treatment effectively restored the colon length and ameliorated enterocyte death by inhibiting DSS-induced reactive oxygen species (ROS)-mediated necroptosis. The main bioactive components of PT, poncirin and naringin, confirmed using ultra-performance liquid chromatography-quadrupole time-of-flight (UPLC-qTOF), can be utilized to regulate necroptosis. The antidepressant-like effects of PT were confirmed using open field test (OFT) and tail suspension test (TST). PT treatment also restored vascular endothelial cell integrity in the hippocampus. In the Cornu Ammonis 1 (CA1) and dentate gyrus (DG) regions of the hippocampus, PT controlled the neuroinflammatory responses of proliferated microglia. In conclusion, PT, which contains high levels of poncirin and naringin, has potential as a bidirectional therapeutic agent that can simultaneously improve IBD-associated intestinal and mental disorders.


Asunto(s)
Colitis , Depresión , Sulfato de Dextran , Flavanonas , Ratones Endogámicos C57BL , Extractos Vegetales , Poncirus , Animales , Poncirus/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Masculino , Ratones , Depresión/tratamiento farmacológico , Flavanonas/farmacología , Flavanonas/aislamiento & purificación , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/patología , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Antidepresivos/farmacología , Antidepresivos/aislamiento & purificación , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Especies Reactivas de Oxígeno/metabolismo
12.
Cells ; 12(18)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37759541

RESUMEN

Karyomegalic interstitial nephritis (KIN) is a genetic kidney disease caused by mutations in the FANCD2/FANCI-Associated Nuclease 1 (FAN1) gene on 15q13.3, which results in karyomegaly and fibrosis of kidney cells through the incomplete repair of DNA damage. The aim of this study was to explore the possibility of using a human induced pluripotent stem cell (hiPSC)-derived kidney organoid system for modeling FAN1-deficient kidney disease, also known as KIN. We generated kidney organoids using WTC-11 (wild-type) hiPSCs and FAN1-mutant hiPSCs which include KIN patient-derived hiPSCs and FAN1-edited hiPSCs (WTC-11 FAN1+/-), created using the CRISPR/Cas9 system in WTC-11-hiPSCs. Kidney organoids from each group were treated with 20 nM of mitomycin C (MMC) for 24 or 48 h, and the expression levels of Ki67 and H2A histone family member X (H2A.X) were analyzed to detect DNA damage and assess the viability of cells within the kidney organoids. Both WTC-11-hiPSCs and FAN1-mutant hiPSCs were successfully differentiated into kidney organoids without structural deformities. MMC treatment for 48 h significantly increased the expression of DNA damage markers, while cell viability in both FAN1-mutant kidney organoids was decreased. However, these findings were observed in WTC-11-kidney organoids. These results suggest that FAN1-mutant kidney organoids can recapitulate the phenotype of FAN1-deficient kidney disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Nefritis Intersticial , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Riñón/metabolismo , Endonucleasas , Organoides/metabolismo , Enzimas Multifuncionales
13.
Transl Res ; 258: 35-46, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36805562

RESUMEN

The objective of this study was to investigate whether CRISPR/Cas9-mediated suppression of A4GALT could rescue phenotype of Fabry disease nephropathy (FDN) using human induced pluripotent stem cells (hiPSCs) derived kidney organoid system. We generated FDN patient-derived hiPSC (CMC-Fb-002) and FD-specific hiPSCs (GLA-KO) by knock-out (KO) of GLA in wild-type (WT) hiPSCs using CRISPR/Cas9. We then performed A4GALT KO in both CMC-Fb-002 and GLA-KO to make Fb-002-A4GALT-KO and GLA/A4GALT-KO, respectively. Using these hiPSCs, we generated kidney organoids and compared alpha-galactosidase-A enzyme (α-GalA) activity, globotriaosylceramide (Gb-3) deposition, and zebra body formation under electron microscopy (EM). We also compared mRNA expression levels using RNA-seq and qPCR. Generated hiPSCs showed typical pluripotency markers without chromosomal disruption. Expression levels of GLA in CMC-Fb-002 and GLA-KO and expression levels of A4GALT in Fb-002-A4GALT-KO and GLA/A4GALT-KO were successfully decreased compared to those in WT-hiPSCs, respectively. Generated kidney organoids using these hiPSCs expressed typical nephron markers. In CMC-Fb-002 and GLA-KO organoids, α-GalA activity was significantly decreased along with increased deposition of Gb-3 in comparison with WT organoids. Intralysosomal inclusion body was also detected under EM. However, these disease phenotypes were rescued by KO of A4GALT in both GLA/A4GALT-KO and Fb-002-A4GALT-KO kidney organoids. RNA-seq showed increased expression levels of genes related to FDN progression in both GLA-mutant organoids compared to those in WT. Such increases were rescued in GLA/A4GALT-KO or Fb-002-A4GALT-KO organoids. CRISPR/Cas9 mediated suppression of A4GALT could rescue FDN phenotype. Hence, it can be proposed as a therapeutic approach to treat FDN.


Asunto(s)
Enfermedad de Fabry , Células Madre Pluripotentes Inducidas , Enfermedades Renales , Humanos , Enfermedad de Fabry/genética , Enfermedad de Fabry/metabolismo , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Riñón/metabolismo , Enfermedades Renales/genética , Fenotipo , Organoides
14.
Immunology ; 136(2): 231-40, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22385341

RESUMEN

Mycobacterial proteins interact with host macrophages and modulate their functions and cytokine gene expression profile. The protein Rv0652 is abundant in culture filtrates of Mycobacterium tuberculosis K-strain, which belongs to the Beijing family, compared with levels in the H37Rv and CDC1551 strains. Rv0652 induces strong antibody responses in patients with active tuberculosis. We investigated pro-inflammatory cytokine production induced by Rv0652 in murine macrophages and the roles of signalling pathways. In RAW264.7 cells and bone marrow-derived macrophages, recombinant Rv0652 induced predominantly tumour necrosis factor (TNF) and monocyte chemoattractant protein (MCP)-1 production, which was dependent on mitogen-activated protein kinases and nuclear factor-κB. Specific signalling pathway inhibitors revealed that the extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and phosphatidylinositol 3-kinase (PI3K) pathways were essential for Rv0652-induced TNF production, whereas the ERK1/2 and PI3K pathways, but not the p38 pathway, were critical for MCP-1 production in macrophages. Rv0652-stimulated TNF and MCP-1 secretion by macrophages occurred in a Toll-like receptor 4-dependent and MyD88-dependent manner. In addition, Rv0652 significantly up-regulated the expression of the mannose receptor, CD80, CD86 and MHC class II molecules. These results suggest that Rv0652 can induce a protective immunity against M. tuberculosis through the macrophage activation.


Asunto(s)
Proteínas Bacterianas/inmunología , Quimiocina CCL2/biosíntesis , Macrófagos/metabolismo , Mycobacterium tuberculosis/inmunología , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Antígeno B7-1/biosíntesis , Antígeno B7-1/inmunología , Antígeno B7-2/biosíntesis , Antígeno B7-2/inmunología , Línea Celular , Quimiocina CCL2/inmunología , Genes MHC Clase II/inmunología , Lectinas Tipo C/biosíntesis , Lectinas Tipo C/inmunología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/inmunología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/biosíntesis , Lectinas de Unión a Manosa/inmunología , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/antagonistas & inhibidores , Factor 88 de Diferenciación Mieloide/inmunología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/inmunología , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/inmunología , Factor de Necrosis Tumoral alfa/inmunología
15.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35455387

RESUMEN

Muscle atrophy in postmenopausal women is caused by estrogen deficiency and a variety of inflammatory factors, including tumor necrosis factor alpha (TNFα). Paeoniflorin (PNF), a natural compound with anti-inflammatory properties, improves estradiol synthesis. Here, we demonstrate that PNF inhibits the progression of TNFα-induced skeletal muscle atrophy after menopause by restoring mitochondrial biosynthesis. Differentiated myoblasts damaged by TNFα were restored by PNF, as evident by the increase in the expression of myogenin (MyoG) and myosin heavy chain 3 (Myh3)-the markers of muscle differentiation. Moreover, diameter of atrophied myotubes was restored by PNF treatment. TNFα-repressed nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) (a major regulator of mitochondrial biosynthesis) were restored by PNF, via regulation by estrogen receptor alpha (ERα), an upregulator of NRF1. This mechanism was confirmed in ovariectomized (OVX) mice with a ~40% reduction in the cross-sectional area of the anterior tibialis muscle. OVX mice administered PNF (100, 300 mg/kg/day) for 12 weeks recovered more than ~20%. Behavioral, rotarod, and inverted screen tests showed that PNF enhances reduced muscle function in OVX mice. ERα restored expression of mitofusin 1 (MFN1) and mitofusin 2 (MFN2) (mitochondrial fusion markers) and dynamin-related protein (DRP1) and fission 1 (FIS1) (mitochondrial fission markers). Therefore, PNF can prevent muscle atrophy in postmenopausal women by inhibiting dysfunctional mitochondrial biogenesis.

16.
Antioxidants (Basel) ; 11(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36552643

RESUMEN

Necroptosis is a form of programmed cell death with features of necrosis and apoptosis that occurs in the intestinal epithelium of patients with inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease. In addition, necroptosis has also been observed in enterocytes in animal models of dextran sulfate sodium (DSS)-induced colitis. Thus, the discovery of natural products for regulating necroptosis may represent an important therapeutic strategy for improving IBD. We found that Magnolia officinalis bark extract (MBE) prevented weight loss and suppressed the activation of the proinflammatory cytokine IL6 in DSS-induced colitis. Furthermore, MBE restored the length of the damaged colon and decreased the expression of necroptosis markers in mice with DSS-induced colitis. In vitro, necroptosis-induced reactive oxygen species (ROS) production was reduced by MBE, and the expression of COX2, a target protein of ROS, was simultaneously suppressed. Both magnolol and honokiol, the two major bioactive compounds in MBE, inhibited necroptosis in human primary intestinal epithelial cells and colorectal adenocarcinoma cells. Our findings highlight the effectiveness of MBE in modulating enterocyte necroptosis and suggest that MBE may be developed as a natural, disease-targeting drug for the treatment of colitis.

17.
Biomedicines ; 10(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35740265

RESUMEN

Plasma-treated media (PTM) serve as an adjuvant therapy to postoperatively remove residual cancerous lesions. We speculated that PTM could selectively kill cells infected with Mycobacterium tuberculosis (Mtb) and remove postoperative residual tuberculous lesions. We therefore investigated the effects of a medium exposed to a non-thermal plasma jet on the suppression of intracellular Mtb replication, cell death, signaling, and selectivity. We propose that PTM elevates the levels of the detoxifying enzymes, glutathione peroxidase, catalase, and ataxia-telangiectasia mutated serine/threonine kinase and increases intracellular reactive oxygen species production in Mtb-infected cells. The bacterial load was significantly decreased in spleen and lung tissues and single-cell suspensions from mice intraperitoneally injected with PTM compared with saline and untreated medium. Therefore, PTM has the potential as a novel treatment that can eliminate residual Mtb-infected cells after infected tissues are surgically resected.

18.
NPJ Regen Med ; 7(1): 8, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046408

RESUMEN

Huntington's disease (HD) is a severe inherited neurological disorder caused by a CAG repeat expansion in the huntingtin gene (HTT), leading to the accumulation of mutant huntingtin with polyglutamine repeats. Despite its severity, there is no cure for this debilitating disease. HTT lowering strategies, including antisense oligonucleotides (ASO) showed promising results very recently. Attempts to develop stem cell-based therapeutics have shown efficacy in preclinical HD models. Using an HD patient's autologous cells, which have genetic defects, may hamper therapeutic efficacy due to mutant HTT. Pretreating these cells to reduce mutant HTT expression and transcription may improve the transplanted cells' therapeutic efficacy. To investigate this, we targeted the SUPT4H1 gene that selectively supports the transcription of long trinucleotide repeats. Transplanting SUPT4H1-edited HD-induced pluripotent stem cell-derived neural precursor cells (iPSC-NPCs) into the YAC128 HD transgenic mouse model improved motor function compared to unedited HD iPSC-NPCs. Immunohistochemical analysis revealed reduced mutant HTT expression without compensating wild-type HTT expression. Further, SUPT4H1 editing increased neuronal and decreased reactive astrocyte differentiation in HD iPSC-NPCs compared to the unedited HD iPSC-NPCs. This suggests that ex vivo editing of SUPT4H1 can reduce mutant HTT expression and provide a therapeutic gene editing strategy for autologous stem cell transplantation in HD.

19.
Stem Cell Rev Rep ; 17(3): 1053-1067, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33423156

RESUMEN

Human embryonic stem cells (hESCs) hold promise in regenerative medicine but allogeneic immune rejections caused by highly polymorphic human leukocyte antigens (HLAs) remain a barrier to their clinical applications. Here, we used a CRISPR/Cas9-mediated HLA-editing strategy to generate a variety of HLA homozygous-like hESC lines from pre-established hESC lines. We edited four pre-established HLA-heterozygous hESC lines and created a mini library of 14 HLA-edited hESC lines in which single HLA-A and HLA-B alleles and both HLA-DR alleles are disrupted. The HLA-edited hESC derivatives elicited both low T cell- and low NK cell-mediated immune responses. Our library would cover about 40% of the Asian-Pacific population. We estimate that HLA-editing of only 19 pre-established hESC lines would give rise to 46 different hESC lines to cover 90% of the Asian-Pacific population. This study offers an opportunity to generate an off-the-shelf HLA-compatible hESC bank, available for immune-compatible cell transplantation, without embryo destruction. Graphical Abstract.


Asunto(s)
Edición Génica , Células Madre Embrionarias Humanas , Embrión de Mamíferos , Trasplante de Células Madre Hematopoyéticas , Humanos , Medicina Regenerativa
20.
Stem Cell Res ; 51: 102214, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33545641

RESUMEN

Human-induced pluripotent stem cell lines (hiPSCs) derived from the peripheral blood mononuclear cells (PBMCs) of a woman (CMCi007-A) and her son (CMCi006-A) diagnosed with Fabry disease (FD) caused by the frameshift deletion mutation c.969delC in the alpha-galactosidase A (GLA) gene were generated. These hiPSCs showed typical human embryonic stem cell-like morphology and expressed pluripotency-associated markers, and directly differentiated into all three germ-layers. Karyotyping showed normal 46, XY (CMCi006-A) and 46, XX (CMCi007-A). In summary, we generated novel patient-specific hiPSC lines from both a female and male containing the same mutation, which may provide additional insight into the pathophysiology of FD.


Asunto(s)
Enfermedad de Fabry , Células Madre Pluripotentes Inducidas , Enfermedad de Fabry/genética , Femenino , Humanos , Leucocitos Mononucleares , Masculino , Mutación , Eliminación de Secuencia , alfa-Galactosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA