Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811809

RESUMEN

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Asunto(s)
COVID-19/complicaciones , Cardiotónicos/uso terapéutico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Cardiopatías/tratamiento farmacológico , Quinazolinonas/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Citocinas/metabolismo , Femenino , Cardiopatías/etiología , Células Madre Embrionarias Humanas , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Tratamiento Farmacológico de COVID-19
2.
Proc Natl Acad Sci U S A ; 120(42): e2305662120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812696

RESUMEN

Nanomedicines for treating chronic kidney disease (CKD) are on the horizon, yet their delivery to renal tubules where tubulointerstitial fibrosis occurs remains inefficient. We report a folic acid-conjugated gold nanoparticle that can transport into renal tubules and treat tubulointerstitial fibrosis in mice with unilateral ureteral obstruction. The 3-nm gold core allows for the dissection of bio-nano interactions in the fibrotic kidney, ensures the overall nanoparticle (~7 nm) to be small enough for glomerular filtration, and naturally inhibits the p38α mitogen-activated protein kinase in the absence of chemical or biological drugs. The folic acids support binding to selected tubule cells with overexpression of folate receptors and promote retention in the fibrotic kidney. Upon intravenous injection, this nanoparticle can selectively accumulate in the fibrotic kidney over the nonfibrotic contralateral kidney at ~3.6% of the injected dose. Delivery to the fibrotic kidney depends on nanoparticle size and disease stage. Notably, a single injection of this self-therapeutic nanoparticle reduces tissue degeneration, inhibits genes related to the extracellular matrix, and treats fibrosis more effectively than standard Captopril therapy. Our data underscore the importance of constructing CKD nanomedicines based on renal pathophysiology.


Asunto(s)
Nanopartículas del Metal , Insuficiencia Renal Crónica , Ratones , Animales , Oro/farmacología , Ácido Fólico/metabolismo , Nanopartículas del Metal/uso terapéutico , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Fibrosis
3.
Proc Natl Acad Sci U S A ; 119(39): e2201443119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122215

RESUMEN

Atherosclerosis treatments by gene regulation are garnering attention, yet delivery of gene cargoes to atherosclerotic plaques remains inefficient. Here, we demonstrate that assembly of therapeutic oligonucleotides into a three-dimensional spherical nucleic acid nanostructure improves their systemic delivery to the plaque and the treatment of atherosclerosis. This noncationic nanoparticle contains a shell of microRNA-146a oligonucleotides, which regulate the NF-κB pathway, for achieving transfection-free cellular entry. Upon an intravenous injection into apolipoprotein E knockout mice fed with a high-cholesterol diet, this nanoparticle naturally targets class A scavenger receptor on plaque macrophages and endothelial cells, contributing to elevated delivery to the plaques (∼1.2% of the injected dose). Repeated injections of the nanoparticle modulate genes related to immune response and vascular inflammation, leading to reduced and stabilized plaques but without inducing severe toxicity. Our nanoparticle offers a safe and effective treatment of atherosclerosis and reveals the promise of nucleic acid nanotechnology for cardiovascular disease.


Asunto(s)
Aterosclerosis , MicroARNs , Nanopartículas , Placa Aterosclerótica , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Células Endoteliales/metabolismo , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/uso terapéutico , FN-kappa B/genética , FN-kappa B/metabolismo , Nanopartículas/química , Nanopartículas/uso terapéutico , Oligonucleótidos/uso terapéutico , Placa Aterosclerótica/metabolismo , Receptores Depuradores/metabolismo
4.
Hepatology ; 77(1): 213-229, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363898

RESUMEN

BACKGROUND AND AIMS: Metabolism in the liver is dysregulated in obesity, contributing to various health problems including steatosis and insulin resistance. While the pathogenesis of lipid accumulation has been extensively studied, the protective mechanism against lipid challenge in the liver remains unclear. Here, we report that Src homology 3 domain binding kinase 1 (SBK1) is a regulator of hepatic lipid metabolism and systemic insulin sensitivity in response to obesity. APPROACH AND RESULTS: Enhanced Sbk1 expression was found in the liver of high-fat diet (HFD)-induced obese mice and fatty acid (FA)-challenged hepatocytes. SBK1 knockdown in mouse liver cells augmented FA uptake and lipid accumulation. Similarly, liver-specific SBK1 knockout ( Lsko ) mice displayed more severe hepatosteatosis and higher expression of genes in FA uptake and lipogenesis than the Flox/Flox ( Fl/Fl ) control mice when fed the HFD. The HFD-fed Lsko mice also showed symptoms of hyperglycemia, poor systemic glucose tolerance, and lower insulin sensitivity than the Fl/Fl mice. On the other hand, hepatic Sbk1 overexpression alleviated the high-fructose diet-induced hepatosteatosis, hyperlipidemia, and hyperglycemia in mice. White adipose tissue browning was also observed in hepatic SBK1 -overexpressed mice. Moreover, we found that SBK1 was a positive regulator of FGF21 in the liver during energy surplus conditions. Mechanistically, SBK1 phosphorylates the orphan nuclear receptor 4A1 (Nur77) on serine 344 to promote hepatic FGF21 expression and inhibit the transcription of genes involved in lipid anabolism. CONCLUSIONS: Collectively, our data suggest that SBK1 is a regulator of the metabolic adaption against obesity through the Nur77-FGF21 pathway.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Proteínas Quinasas , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Hígado Graso/patología , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Hiperglucemia/patología , Lípidos , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares
5.
Bioinformatics ; 38(Suppl 1): i84-i91, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35758812

RESUMEN

MOTIVATION: Molecular carcinogenicity is a preventable cause of cancer, but systematically identifying carcinogenic compounds, which involves performing experiments on animal models, is expensive, time consuming and low throughput. As a result, carcinogenicity information is limited and building data-driven models with good prediction accuracy remains a major challenge. RESULTS: In this work, we propose CONCERTO, a deep learning model that uses a graph transformer in conjunction with a molecular fingerprint representation for carcinogenicity prediction from molecular structure. Special efforts have been made to overcome the data size constraint, such as multi-round pre-training on related but lower quality mutagenicity data, and transfer learning from a large self-supervised model. Extensive experiments demonstrate that our model performs well and can generalize to external validation sets. CONCERTO could be useful for guiding future carcinogenicity experiments and provide insight into the molecular basis of carcinogenicity. AVAILABILITY AND IMPLEMENTATION: The code and data underlying this article are available on github at https://github.com/bowang-lab/CONCERTO.


Asunto(s)
Carcinógenos , Redes Neurales de la Computación , Animales , Carcinógenos/toxicidad , Predicción , Mutágenos
6.
PLoS Pathog ; 17(5): e1009527, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33956888

RESUMEN

Baloxavir is approved in several countries for the treatment of uncomplicated influenza in otherwise-healthy and high-risk patients. Treatment-emergent viruses with reduced susceptibility to baloxavir have been detected in clinical trials, but the likelihood of widespread occurrence depends on replication capacity and onward transmission. We evaluated the fitness of A/H3N2 and A/H1N1pdm09 viruses with the polymerase acidic (PA) I38T-variant conferring reduced susceptibility to baloxavir relative to wild-type (WT) viruses, using a competitive mixture ferret model, recombinant viruses and patient-derived virus isolates. The A/H3N2 PA/I38T virus showed a reduction in within-host fitness but comparable between-host fitness to the WT virus, while the A/H1N1pdm09 PA/I38T virus had broadly similar within-host fitness but substantially lower between-host fitness. Although PA/I38T viruses replicate and transmit between ferrets, our data suggest that viruses with this amino acid substitution have lower fitness relative to WT and this relative fitness cost was greater in A/H1N1pdm09 viruses than in A/H3N2 viruses.


Asunto(s)
Antivirales/farmacología , Dibenzotiepinas/farmacología , Modelos Animales de Enfermedad , Farmacorresistencia Viral , Virus de la Influenza A/genética , Morfolinas/farmacología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Piridonas/farmacología , Triazinas/farmacología , Replicación Viral , Sustitución de Aminoácidos , Animales , Femenino , Hurones , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/aislamiento & purificación , Masculino , Infecciones por Orthomyxoviridae/virología
7.
Nano Lett ; 22(8): 3400-3409, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35436127

RESUMEN

DNA nanostructures are attractive gene carriers for nanomedicine applications, yet their delivery to the nucleus remains inefficient. We present the application of extracellular mechanical stimuli to activate cellular mechanotransduction for boosting the intranuclear delivery of DNA nanostructures. Treating mammalian cells with polythymidine-rich spherical nucleic acids (poly(T) SNAs) under gentle compression by a single coverslip leads to up to ∼50% nuclear accumulation without severe endosomal entrapment, cytotoxicity, or long-term membrane damage; no chemical modification or transfection reagent is needed. Gentle compression activates Rho-ROCK mechanotransduction and causes nuclear translocation of YAP. Joint compression and treatment with poly(T) oligonucleotides upregulate genes linked to myosin, actin filament, and nuclear import. In turn, Rho-ROCK, myosin, and importin mediate the nuclear entry of poly(T) SNAs. Treatment of endothelioma cells with poly(T) SNAs bearing antisense oligonucleotides under compression inhibits an intranuclear oncogene. Our data should inspire the marriage of DNA nanotechnology and cellular biomechanics for intranuclear applications.


Asunto(s)
Nanoestructuras , Ácidos Nucleicos , Animales , ADN/genética , Mamíferos , Mecanotransducción Celular , Nanomedicina , Ácidos Nucleicos/química
8.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298352

RESUMEN

Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.


Asunto(s)
Adipogénesis , Lisina , Ratones , Animales , Adipogénesis/genética , Células 3T3-L1 , Lisina/genética , Interleucina-6/genética , Diferenciación Celular/genética , Perfilación de la Expresión Génica , PPAR gamma/metabolismo
9.
PLoS Pathog ; 16(4): e1008395, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32294137

RESUMEN

Influenza viruses cause seasonal outbreaks and pose a continuous pandemic threat. Although vaccines are available for influenza control, their efficacy varies each season and a vaccine for a novel pandemic virus manufactured using current technology will not be available fast enough to mitigate the effect of the first pandemic wave. Antivirals can be effective against many different influenza viruses but have not thus far been used extensively for outbreak control. Baloxavir, a recently licensed antiviral drug that targets the influenza virus endonuclease, has been shown to reduce virus shedding more effectively than oseltamivir, a widely used neuraminidase inhibitor drug. Thus it is possible that treatment with baloxavir might also interrupt onward virus transmission. To test this, we utilized the ferret model, which is the most commonly used animal model to study influenza virus transmission. We established a subcutaneous baloxavir administration method in ferrets which achieved similar pharmacokinetics to the approved human oral dose. Transmission studies were then conducted in two different locations with different experimental setups to compare the onward transmission of A(H1N1)pdm09 virus from infected ferrets treated with baloxavir, oseltamivir or placebo to naïve sentinel ferrets exposed either indirectly in adjacent cages or directly by co-housing. We found that baloxavir treatment reduced infectious viral shedding in the upper respiratory tract of ferrets compared to placebo, and reduced the frequency of transmission amongst sentinels in both experimental setups, even when treatment was delayed until 2 days post-infection. In contrast, oseltamivir treatment did not substantially affect viral shedding or transmission compared to placebo. We did not detect the emergence of baloxavir-resistant variants in treated animals or in untreated sentinels. Our results support the concept that antivirals which decrease viral shedding could also reduce influenza transmission in the community.


Asunto(s)
Antivirales/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Oxazinas/farmacología , Piridinas/farmacología , Tiepinas/farmacología , Triazinas/farmacología , Replicación Viral/efectos de los fármacos , Esparcimiento de Virus/efectos de los fármacos , Animales , Dibenzotiepinas , Femenino , Hurones , Morfolinas , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Piridonas
10.
Invest New Drugs ; 40(5): 895-904, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35857203

RESUMEN

Gastric cancer is one of the most common malignant solid tumors in the world, especially in Asia with high mortality due to a lack of effective treatment. The potential usage of the newly constructed arginine-depleting enzyme-mono-PEGylated Bacillus caldovelox arginase mutant (BCA-M-PEG20), an effective drug against multiple cancer cell lines such as cervical and lung cancers, for the treatment of gastric cancer was demonstrated. Our results indicated that BCA-M-PEG20 significantly inhibited argininosuccinate synthetase (ASS)-positive gastric cancer cells, MKN-45 and BGC-823, while another arginine-depleting enzyme, arginine deiminase (ADI, currently under Phase III clinical trial), failed to suppress the growth of gastric cancer cells. In vitro studies demonstrated that BCA-M-PEG20 inhibited MKN-45 cells by inducing autophagy and cell cycle arrest at the S phase under 0.58 U/mL (IC50 values). Significant caspase-dependent apoptosis was induced in MKN-45 after the treatment with 2.32 U/mL of BCA-M-PEG20. In vivo studies showed that administrations of BCA-M-PEG20 at 250 U/mouse twice per week significantly suppressed about 50% of tumor growth in the MKN-45 gastric cancer xenograft model. Taken together, BCA-M-PEG20 demonstrated a superior potential to be an anti-gastric cancer drug.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Gástricas , Animales , Apoptosis , Arginasa/farmacología , Arginina , Autofagia , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Geobacillus , Humanos , Hidrolasas/farmacología , Hidrolasas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico
11.
Nano Lett ; 21(20): 8723-8733, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34618470

RESUMEN

We present a self-therapeutic nanoparticle for topical delivery to epidermal keratinocytes to prevent and treat psoriasis. Devoid of known chemical or biological antipsoriatic drugs, this sub-15 nm nanoparticle contains a 3 nm gold core and a shell of 1000 Da polyethylene glycol strands modified with 30% octadecyl chains. When it is applied to imiquimod-induced psoriasis mice without an excipient, the nanoparticle can cross the stratum corneum and preferentially enter keratinocytes. Applying the nanoparticles concurrently with imiquimod prevents psoriasis and downregulates genes that are enriched in the downstream of the interleukin-17 signaling pathway and linked to epidermis hyperproliferation and inflammation. Applying the nanoparticles after psoriasis is established treats the psoriatic skin as effectively as standard steroid and vitamin D analog-based therapy but without hair loss and skin wrinkling. The nanoparticles do not accumulate in major organs or induce long-term toxicity. Our nanoparticle offers a simple, safe, and effective alternative for treating psoriasis.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Psoriasis , Animales , Modelos Animales de Enfermedad , Oro , Imiquimod , Queratinocitos , Ratones , Psoriasis/tratamiento farmacológico
12.
Molecules ; 27(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011543

RESUMEN

Neuropeptides are autocrine and paracrine signalling factors and mainly bind to G protein-coupled receptors (GPCRs) to trigger intracellular secondary messenger release including adenosine 3', 5'-cyclic monophosphate (cAMP), thus modulating cancer progress in different kind of tumours. As one of the downstream effectors of cAMP, exchange proteins directly activated by cAMP (EPACs) play dual roles in cancer proliferation and metastasis. More evidence about the relationship between neuropeptides and EPAC pathways have been proposed for their potential role in cancer development; hence, this review focuses on the role of neuropeptide/GPCR system modulation of cAMP/EPACs pathways in cancers. The correlated downstream pathways between neuropeptides and EPACs in cancer cell proliferation, migration, and metastasis is discussed to glimmer the direction of future research.


Asunto(s)
AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neoplasias/metabolismo , Neuropéptidos/metabolismo , Transducción de Señal , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Neoplasias/etiología , Neoplasias/patología , Especificidad de Órganos/genética , Unión Proteica , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo
13.
J Neurochem ; 157(6): 1850-1860, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33078390

RESUMEN

Pituitary adenylate cyclase-activating peptide (PACAP) receptor (PAC1R) is a class B Gprotein-coupled receptor (GPCR) that is widely expressed in the human body and is involved in neuronal differentiation. As class B GPCRs are known to form heterocomplexes with family members, we hypothesized that PAC1R mediates neuronal differentiation through interaction with a class B GPCR. We used the BRET assay to identify potential interactions between PAC1R and 11 class B GPCRs. Gastric inhibitory polypeptide receptor (GIPR) and secretin receptor were identified as putative binding partners of PAC1R. The effect of heterocomplex formation by PAC1R on receptor activation was evaluated with the cyclic (c)AMP, luciferase reporter, and calcium signaling assays; and the effects on receptor internalization and subcellular localization were examined by confocal microscopy. The results suggested he PAC1R/GIPR heterocomplex suppressed signaling events downstream of PAC1R, including cAMP production, serum response element and calcium signaling, and ß-arrestin recruitment. Protein-protein interaction was analyzed in silico, and induction of neuronal differentiation by the PAC1R heterocomplex was assessed in SH-SY5Y neuronal cells by measure the morphological changes and marker genes expression by real-time quantitative PCR and western blot. Over-expression of GIPR suppressed PACAP/PAC1R-mediated neuronal differentiation and the differentiation markers expression in SH-SY5Y cells. GIPR regulates neuronal differentiation through heterocomplex formation with PAC1R.


Asunto(s)
Diferenciación Celular/fisiología , Neuronas/metabolismo , Receptores de la Hormona Gastrointestinal/química , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/química , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Células HEK293 , Humanos , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Receptores de la Hormona Gastrointestinal/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética
14.
FASEB J ; 34(6): 7561-7577, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32281204

RESUMEN

Elucidation of host-pathogen interaction is essential for developing effective strategies to combat bacterial infection. Dual RNA-Seq using cultured cells or tissues/organs as the host of pathogen has emerged as a novel strategy to understand the responses concurrently from both pathogen and host at cellular level. However, bacterial infection mostly causes systematic responses from the host at organism level where the interplay is urgently to be understood but inevitably being neglected by the current practice. Here, we developed an approach that simultaneously monitor the genome-wide infection-linked transcriptional alterations in both pathogenic Vibrio parahaemolyticus and the infection host nematode Caenorhabditis elegans. Besides the dynamic alterations in transcriptomes of both C. elegans and V. parahaemolyticus during infection, we identify a two-component system, BarA/UvrY, that is important for virulence in host. BarA/UvrY not only controls the virulence factors in V. parahaemolyticus including Type III and Type VI secretion systems, but also attenuates innate immune responses in C. elegans, including repression on the MAP kinase-mediated cascades. Thus, our study exemplifies the use of dual RNA-Seq at organism level to uncover previously unrecognized interplay between host and pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Vibrio parahaemolyticus/genética , Factores de Virulencia/genética , Virulencia/genética , Animales , Caenorhabditis elegans/microbiología , Línea Celular Tumoral , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata/genética , Proteínas de la Membrana/genética , RNA-Seq/métodos , Factores de Transcripción/genética , Pez Cebra
15.
Mol Pharm ; 18(2): 610-626, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32584043

RESUMEN

Polyglutamine (polyQ) diseases, such as Huntington's disease and several types of spinocerebellar ataxias, are dominantly inherited progressive neurodegenerative disorders and characterized by the presence of expanded CAG trinucleotide repeats in the respective disease locus of the patient genomes. Patients with polyQ diseases currently need to rely on symptom-relieving treatments because disease-modifying therapeutic interventions remain scarce. Many disease-modifying therapeutic agents are now under clinical testing for treating polyQ diseases, but their delivery to the brain is often too invasive (e.g., intracranial injection) or inefficient, owing to in vivo degradation and clearance by physiological barriers (e.g., oral and intravenous administration). Nanoparticles provide a feasible solution for improving drug delivery to the brain, as evidenced by an increasing number of preclinical studies that document the efficacy of nanomedicines for polyQ diseases over the past 5-6 years. In this review, we present the pathogenic mechanisms of polyQ diseases, the common animal models of polyQ diseases for evaluating the efficacy of nanomedicines, and the common administration routes for delivering nanoparticles to the brain. Next, we summarize the recent preclinical applications of nanomedicines for treating polyQ diseases and improving neurological conditions in vivo, placing emphasis on antisense oligonucleotides, small peptide inhibitors, and small molecules as the disease-modifying agents. We conclude with our perspectives of the burgeoning field of "nanomedicines for polyQ diseases", including the use of inorganic nanoparticles and potential drugs as next-generation nanomedicines, development of higher-order animal models of polyQ diseases, and importance of "brain-nano" interactions.


Asunto(s)
Portadores de Fármacos/química , Enfermedad de Huntington/tratamiento farmacológico , Nanopartículas/química , Fármacos Neuroprotectores/administración & dosificación , Péptidos/antagonistas & inhibidores , Ataxias Espinocerebelosas/tratamiento farmacológico , Administración Intranasal , Administración Oral , Animales , Animales Modificados Genéticamente , Disponibilidad Biológica , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Sitios Genéticos/genética , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Inyecciones Intraventriculares , Inyecciones Espinales , Fármacos Neuroprotectores/farmacocinética , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacocinética , Péptidos/genética , Péptidos/metabolismo , Permeabilidad , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Distribución Tisular , Expansión de Repetición de Trinucleótido
16.
J Biomed Sci ; 27(1): 17, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906961

RESUMEN

BACKGROUND: Influenza A viruses cause epidemics/severe pandemics that pose a great global health threat. Among eight viral RNA segments, the multiple functions of nucleoprotein (NP) play important roles in viral replication and transcription. METHODS: To understand how NP contributes to the virus evolution, we analyzed the NP gene of H3N2 viruses in Taiwan and 14,220 NP sequences collected from Influenza Research Database. The identified genetic variations were further analyzed by mini-genome assay, virus growth assay, viral RNA and protein expression as well as ferret model to analyze their impacts on viral replication properties. RESULTS: The NP genetic analysis by Taiwan and global sequences showed similar evolution pattern that the NP backbones changed through time accompanied with specific residue substitutions from 1999 to 2018. Other than the conserved residues, fifteen sporadic substitutions were observed in which the 31R, 377G and 450S showed higher frequency. We found 31R and 450S decreased polymerase activity while the dominant residues (31 K and 450G) had higher activity. The 31 K and 450G showed better viral translation and replication in vitro and in vivo. CONCLUSIONS: These findings indicated variations identified in evolution have roles in modulating viral replication in vitro and in vivo. This study demonstrates that the interaction between variations of NP during virus evolution deserves future attention.


Asunto(s)
Evolución Molecular , Variación Genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Biosíntesis de Proteínas/genética , Proteínas de Unión al ARN , Proteínas del Núcleo Viral , Replicación Viral/genética , Células A549 , Animales , Perros , Humanos , Gripe Humana/epidemiología , Gripe Humana/genética , Gripe Humana/metabolismo , Células de Riñón Canino Madin Darby , Proteínas de la Nucleocápside , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Taiwán , Proteínas del Núcleo Viral/biosíntesis , Proteínas del Núcleo Viral/genética
17.
J Cell Mol Med ; 23(7): 4569-4581, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31037837

RESUMEN

Although invasive epithelial ovarian cancer (IOC) and low malignant potential ovarian tumour (LMP) are similar, they are associated with different outcomes and treatment strategies. The current accuracy in distinguishing these diseases is unsatisfactory, leading to delays or unnecessary treatments. We compared the molecular signature of IOC and LMP cases by analysing their transcriptomic data and re-clustered them according to these data rather than the pathological dissection. We identified that FAM83D was highly expressed in IOC. To verify the role of FAM83D in the progression and metastasis, we used the isogenic ovarian cancer metastatic models, highly metastatic cells (HM) and non-metastatic cells (NM). Overexpression of FAM83D significantly promoted cell proliferation, migration and spheroid formation. This was consistent with previous data showing that high FAM83D expression is associated with poor prognosis in cancer patients. Moreover, similar to the HM cells, the FAM83D-overexpressing NM cells demonstrated stronger phosphorylation of the epidermal growth factor receptor (EGFR) and c-Raf. This indicates that the action of FAM83D is mediated by the activation of the EGFR pathway. Taken together, this report suggested that FAM83D might be an excellent molecular marker to discriminate between IOC and LMP.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Progresión de la Enfermedad , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones SCID , Proteínas Asociadas a Microtúbulos/genética , Invasividad Neoplásica , Neoplasias Ováricas/genética , Curva ROC , Transducción de Señal , Análisis de Supervivencia , Transcriptoma/genética , Regulación hacia Arriba/genética
18.
Int J Mol Sci ; 19(7)2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29996469

RESUMEN

Nanoparticles (NPs) have attracted unequivocal attention in recent years due to their potential applications in therapeutics, bio-imaging and material sciences. For drug delivery, NP-based carrier systems offer several advantages over conventional methods. When conjugated with ligands and drugs (or other therapeutic molecules), administrated NPs are able to deliver cargo to targeted sites through ligand-receptor recognition. Such targeted delivery is especially important in cancer therapy. Through this targeted cancer nanotherapy, cancer cells are killed with higher specificity, while the healthy cells are spared. Furthermore, NP drug delivery leads to improved drug load, enhanced drug solubility and stability, and controlled drug release. G protein-coupled receptors (GPCRs) are a superfamily of cell transmembrane receptors. They regulate a plethora of physiological processes through ligand-receptor-binding-induced signaling transduction. With recent evidence unveiling their roles in cancer, GPCR agonists and antagonists have quickly become new targets in cancer therapy. This review focuses on the application of some notable nanomaterials, such as dendrimers, quantum dots, gold nanoparticles, and magnetic nanoparticles, in GPCR-related cancers.


Asunto(s)
Antineoplásicos/administración & dosificación , Nanopartículas/administración & dosificación , Neoplasias/tratamiento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Ensayos Clínicos como Asunto , Portadores de Fármacos , Oro/química , Humanos , Nanopartículas/química , Nanopartículas/clasificación , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores
19.
J Biol Chem ; 291(33): 17332-44, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27330080

RESUMEN

Complexes of secretin (SecR) and angiotensin 1a (Atr1a) receptors have been proposed to be functionally important in osmoregulation, providing an explanation for overlapping and interdependent functions of hormones that bind and activate different classes of GPCRs. However, the nature of these cross-class complexes has not been well characterized and their signaling properties have not been systematically explored. We now use competitive inhibition of receptor bioluminescence resonance energy transfer and bimolecular fluorescence complementation to establish the dominant functionally important state as a symmetrical homodimeric form of SecR decorated by monomeric Atr1a, interacting through lipid-exposed faces of Atr1a TM1 and TM4. Conditions increasing prevalence of this complex exhibited negative allosteric modulatory impact on secretin-stimulated cAMP responses at SecR. In contrast, activating Atr1a with full agonist in such a complex exhibited a positive allosteric modulatory impact on the same signaling event. This modulation was functionally biased, with secretin-stimulated calcium responses unaffected, whereas angiotensin-stimulated calcium responses through the complex were reduced or absent. Further supporting this interpretation, Atr1a with mutations of lipid-exposed faces of TM1 and TM4 that did not affect its ability to bind or signal, could be expressed in the same cell as SecR, yet not exhibit either the negative or positive allosteric impact on cAMP observed with the inactive or activated states of wild type Atr1a on function, and not interfere with angiotensin-stimulated calcium responses like complexes with Atr1a. This may provide a more selective means of exploring the physiologic functional impact of this cross-class receptor complex without interfering with the function of either component receptor.


Asunto(s)
Señalización del Calcio/fisiología , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Animales , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ratones , Mutación , Dominios Proteicos , Estructura Cuaternaria de Proteína , Ratas , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores de la Hormona Gastrointestinal/química , Receptores de la Hormona Gastrointestinal/genética , Relación Estructura-Actividad
20.
Biochim Biophys Acta ; 1859(7): 922-32, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27080132

RESUMEN

A growing body of evidence suggests that secretin (SCT) is an important element in the osmoregulatory pathway. It is interesting to note that both SCT and its receptor (SCTR) gene are activated upon hyperosmolality in the kidney. However, the precise molecular mechanisms underlying the induction of the SCTR gene expression in response to changes in osmolality have yet to be clarified. Detailed DNA sequence analysis of the promoter regions of the SCTR gene reveals the presence of multiple osmotic response elements (ORE). The ORE is the binding site of a key osmosensitive transactivator, namely, the nuclear factor of activated T-cells 5 (NFAT5). SCTR and NFAT5 are co-expressed in the kidney cortex and medulla collecting duct cells. We therefore hypothesize that NFAT5 is responsible for modulating SCTR expression in hypertonic environments. In this study, we found hypertonicity stimulates the promoter activities and endogenous gene expression of SCTR in mouse kidney cortex collecting duct cells (M1) and inner medulla collecting duct cells (mIMCD3). The overexpression and silencing of NFAT5 further confirmed it to be responsible for the up-regulation of the SCTR gene under hypertonic conditions. A significant increase in the interaction between NFAT5 and the SCTR promoter was also observed following chromatin immunoprecipitation assay. In vivo, osmotic stress up-regulates the SCTR gene in the kidney cortex and medulla of wild-type mice, but does not do so in NFAT5(+/-) animals. Hence, this study provides comprehensive information on how NFAT5 regulates SCTR expression in different osmotic environments.


Asunto(s)
Soluciones Hipertónicas/farmacología , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Colectores/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de la Hormona Gastrointestinal/genética , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Presión Osmótica/efectos de los fármacos , Presión Osmótica/fisiología , Regiones Promotoras Genéticas/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA