Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 62(4): 1570-1579, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36656719

RESUMEN

A new copper indium selenide, Ba3.5Cu7.55In1.15Se9, was synthesized by the KBr flux reaction at 800 °C. The compound crystallizes with orthorhombic Pnma, a = 46.1700(12) Å, b = 4.26710(10) Å, c = 19.8125(5) Å, and Z = 8. The structural framework mainly consists of four sites of cubane-type defective M4Se3 (M = Cu, Cu/In) units with disordered Cu+/In3+ ions present at the part corner of each unit. The single crystal emits intense photoluminescence at 657 nm with a relative quantum yield (RQY) 0.2 times that of rhodamine 6G powder. The compound belongs to a direct band gap at 1.91 eV, analyzed by Tauc's plot, and the energy is close to the PL position. The Hall effect measurement on a pressed pellet reveals an n-type conductivity with a carrier concentration of 3.358 × 1017 cm-3 and a mobility of 24.331 cm2 V-1 s-1. Furthermore, the compound produces a strong nonlinear third-harmonic generation (THG), with an χS(3) value of 1.3 × 105 pm2/V2 comparable to 1.6 × 105 pm2/V2 for AgGaSe2 measured at 800 nm.

2.
Opt Express ; 24(5): 4411-4420, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29092270

RESUMEN

Red, green, and blue (RGB) light-emitting diode (LED) is a narrow-band light source that can improve visual contrast, and thus, can be used for special illumination. In this study, three RGB LEDs, each provided with two reflective mirrors, are used to design an all-reflective color temperature-adjustable LED flashlight. The LED flashlight features an adjustable color temperature ranging from 2000 K to 6500 K, a uniformity of illuminance of 0.68, an average difference of uniformity of approximately 25%, and a color uniformity of 0.0042.

3.
Nanomaterials (Basel) ; 14(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38251122

RESUMEN

The exploration initiated by the discovery of the topological insulator (BixSb1-x)2Te3 has extended to unlock the potential of quantum anomalous Hall effects (QAHEs), marking a revolutionary era for topological quantum devices, low-power electronics, and spintronic applications. In this study, we present the epitaxial growth of Cr-doped (Bi0.4Sb0.6)2Te3 (Cr:BST) thin films via molecular beam epitaxy, incorporating various Cr doping concentrations with varying Cr/Sb ratios (0.025, 0.05, 0.075, and 0.1). High-quality crystalline of the Cr:BST thin films deposited on a c-plane sapphire substrate has been rigorously confirmed through reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM) analyses. The existence of a Cr dopant has been identified with a reduction in the lattice parameter of BST from 30.53 ± 0.05 to 30.06 ± 0.04 Å confirmed by X-ray diffraction, and the valence state of Cr verified by X-ray photoemission (XPS) at binding energies of ~573.1 and ~583.5 eV. Additionally, the influence of Cr doping on lattice vibration was qualitatively examined by Raman spectroscopy, revealing a blue shift in peaks with increased Cr concentration. Surface characteristics, crucial for the functionality of topological insulators, were explored via Atomic Force Microscopy (AFM), illustrating a sevenfold reduction in surface roughness as the Cr concentration increased from 0 to 0.1. The ferromagnetic properties of Cr:BST were examined by a superconducting quantum interference device (SQUID) with a magnetic field applied in out-of-plane and in-plane directions. The Cr:BST samples exhibited a Curie temperature (Tc) above 50 K, accompanied by increased magnetization and coercivity with increasing Cr doping levels. The introduction of the Cr dopant induces a transition from n-type ((Bi0.4Sb0.6)2Te3) to p-type (Cr:(Bi0.4Sb0.6)2Te3) carriers, demonstrating a remarkable suppression of carrier density up to one order of magnitude, concurrently enhancing carrier mobility up to a factor of 5. This pivotal outcome is poised to significantly influence the development of QAHE studies and spintronic applications.

4.
Nanomaterials (Basel) ; 13(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36678033

RESUMEN

For applications of nanolattices in low-temperature nanoelectronics, the inter-unit space can be filled with superconducting metallic alloys. However, superconductivity under nanoconfinement is expected to be strongly affected by size-effects and other factors. We studied the magnetic properties and structure of the Ga-Sn eutectic alloy within regular nanopores of an opal template, to understand the specifics of the alloy superconductivity. Two superconducting transitions were observed, in contrast to the bulk alloy. The transitions were ascribed to the segregates with the structures of tetragonal tin and a particular gallium polymorph. The superconducting-phase diagram was constructed, which demonstrated crossovers from the positive- to the common negative-curvature of the upper critical-field lines. Hysteresis was found between the susceptibilities obtained at cooling and warming in the applied magnetic field.

5.
Nanomaterials (Basel) ; 13(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37110943

RESUMEN

Nanolattices can play the role of templates for metals and metallic alloys to produce functional nanocomposites with particular properties affected by nanoconfinement. To imitate the impact of nanoconfinement on the structure of solid eutectic alloys, we filled porous silica glasses with the Ga-In alloy, which is widely used in applications. Small-angle neutron scattering was observed for two nanocomposites, which comprised alloys of close compositions. The results obtained were treated using different approaches: the common Guinier and extended Guinier models, the recently suggested computer simulation method based on the initial formulae for neutron scattering, and ordinary estimates of the scattering hump positions. All of the approaches predicted a similar structure of the confined eutectic alloy. The formation of ellipsoid-like indium-rich segregates was demonstrated.

6.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35808080

RESUMEN

Potential applications of nanolattices often require filling their empty space with eutectic metallic alloys. Due to confinement to nanolattices, the structure of phase segregates in eutectic alloys can differ from that in bulk. These problems are poorly understood now. We have used small angle neutron scattering (SANS) to study the segregation in the Ga-In alloy confined to an opal template with the regular pore network, created by a strict regularity of opal constituents in close similarity with nanolattices. We showed that SANS is a powerful tool to reveal the configuration of segregated phases within nanotemplates. The In-rich segregates were found to have specific structural features as small sizes and ordered arrangement.

7.
Nanomaterials (Basel) ; 11(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947669

RESUMEN

The intrinsic magnetic topological insulator MnBi2Te4 has attracted much attention due to its special magnetic and topological properties. To date, most reports have focused on bulk or flake samples. For material integration and device applications, the epitaxial growth of MnBi2Te4 film in nanoscale is more important but challenging. Here, we report the growth of self-regulated MnBi2Te4 films by the molecular beam epitaxy. By tuning the substrate temperature to the optimal temperature for the growth surface, the stoichiometry of MnBi2Te4 becomes sensitive to the Mn/Bi flux ratio. Excessive and deficient Mn resulted in the formation of a MnTe and Bi2Te3 phase, respectively. The magnetic measurement of the 7 SL MnBi2Te4 film probed by the superconducting quantum interference device (SQUID) shows that the antiferromagnetic order occurring at the Néel temperature 22 K is accompanied by an anomalous magnetic hysteresis loop along the c-axis. The band structure measured by angle-resolved photoemission spectroscopy (ARPES) at 80 K reveals a Dirac-like surface state, which indicates that MnBi2Te4 has topological insulator properties in the paramagnetic phase. Our work demonstrates the key growth parameters for the design and optimization of the synthesis of nanoscale MnBi2Te4 films, which are of great significance for fundamental research and device applications involving antiferromagnetic topological insulators.

8.
RSC Adv ; 10(39): 23297-23311, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35520345

RESUMEN

Room-temperature ferromagnetism in the large and direct bandgap diluted magnetic semiconductor zinc oxide (ZnO) is attributed to the intrinsic defects and p-orbital-p-orbital (p-p) coupling interaction. However, due to oxidation, the ferromagnetism induced by defects is unstable. In the present work, the solution process synthesis route was utilized to grow pristine and bismuth-doped, highly crystalline ZnO nanowire (ZnO NW)-based samples. The FE-SEM images showed that the grown ZnO NWs have a preferred orientation along the c-axis in the (001) direction due to the anisotropic crystal nature of ZnO. X-ray photoelectron spectroscopy (XPS) confirmed the presence of Bi, and at a higher doping content, the bismuth oxide phase appeared. The XRD patterns showed the wurtzite crystal structure, and the large intensity of the (002) peak suggests that most of the reflection was from the top hexagonal face of the NWs, and thus, the wires are predominantly aligned along the c-axis. The TEM analysis further confirmed the crystal growth direction along the (001) direction. The UV-Visible absorption and PL measurements also showed a decrease in the bandgap with an increase in doping concentration, which may be associated with the sp-d exchange interaction between the localized d-electrons and band electrons of the Bi ions. Bi-doping tended to increase the PL intensity in the visible region. The magnetic properties measured by SQUID at 4 and 300 K showed ferromagnetic behaviour for both the pristine and Bi-doped samples. However, the saturation magnetization for the Bi-doped samples was higher compared to that of the pristine ZnO samples until the threshold doping value. The obtained results demonstrated that Bi-doping can be used to tune both the optical and magnetic properties of ZnO NWs, hence paving the way for future spintronics and spin-polarized optoelectronics applications.

9.
Sci Rep ; 8(1): 108, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311703

RESUMEN

In this study, we integrated bilayer structure of covered Pt on nickel zinc ferrite (NZFO) and CoFe/Pt/NZFO tri-layer structure by pulsed laser deposition system for a spin Hall magnetoresistance (SMR) study. In the bilayer structure, the angular-dependent magnetoresistance (MR) results indicate that Pt/NZFO has a well-defined SMR behavior. Moreover, the spin Hall angle and the spin diffusion length, which were 0.0648 and 1.31 nm, respectively, can be fitted by changing the Pt thickness in the longitudinal SMR function. Particularly, the MR ratio of the bilayer structure (Pt/NZFO) has the highest changing ratio (about 0.135%), compared to the prototype structure Pt/Y3Fe5O12 (YIG) because the NZFO has higher magnetization. Meanwhile, the tri-layer samples (CoFe/Pt/NZFO) indicate that the MR behavior is related with CoFe thickness as revealed in angular-dependent MR measurement. Additionally, comparison between the tri-layer structure with Pt/NZFO and CoFe/Pt bilayer systems suggests that the SMR ratio can be enhanced by more than 70%, indicating that additional spin current should be injected into Pt layer.

10.
Sci Rep ; 7(1): 2422, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28546637

RESUMEN

In this study, we investigate the proximity effect in topological insulator (TI) and magnetic insulator bilayer system. (Bi1-xSbx)2Se3/CoFe2O4 (CFO) heterostructure was fabricated using molecular beam epitaxy and pulsed laser deposition system respectively. As revealed from the magnetoresistance measurement, the weak anti-localization (WAL) is strongly suppressed by proximity effect in (Bi1-xSbx)2Se3/CFO interface. Modified Hikama-Larkin-Nagaoka equation was used to fit the WAL results so that the size of surface state gap can be extracted successfully. The temperature-dependent resistance of the heterostructures at small and large perpendicular magnetic fields were also measured and analyzed. The results indicate that the surface band gap can be induced in TI and continuously enlarged up to 9 T, indicating the gradual alignment of the magnetic moment in CFO under perpendicular magnetic field. The approaches and results accommodated in this work show that CFO can effectively magnetize (Bi1-xSbx)2Se3 and the heterostructures are promising for TI-based spintronic device applications.

11.
Nanoscale ; 7(19): 9033-9, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25921320

RESUMEN

A multispectral imaging method for the rapid and accurate identification of few-layered graphene using optical images is proposed. Commonly rapid identification relies on optical interference effects which limits the choice of substrates and light sources. Our method is based on the comparison of spectral characteristics with principle components from a database which is populated by correlation of micro-Raman registration, spectral characteristics, and optical microscopy. Using this approach the thickness and extent of different graphene layers can be distinguished without the contribution of the optical interference effects and allows characterization of graphene on glass substrates. The high achievable resolution, easy implementation and large scale make this approach suitable for the in-line metrology of industrial graphene production.

12.
J Phys Condens Matter ; 21(45): 455304, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21694009

RESUMEN

Superconductivity and crystalline structure were studied for two nanocomposites consisting of gallium loaded porous glasses with different pore sizes. The superconducting transition temperatures were found to differ from those in known bulk gallium modifications. The transition temperatures 7.1 and 6.7 K were ascribed to two new confined gallium structures, ι- and κ-Ga, observed by synchrotron radiation x-ray powder diffraction. The evolution of superconductivity on decreasing the pore filling with gallium was also studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA