Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(5): 1207-1221.e22, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730858

RESUMEN

Accurate measurement of clonal genotypes, mutational processes, and replication states from individual tumor-cell genomes will facilitate improved understanding of tumor evolution. We have developed DLP+, a scalable single-cell whole-genome sequencing platform implemented using commodity instruments, image-based object recognition, and open source computational methods. Using DLP+, we have generated a resource of 51,926 single-cell genomes and matched cell images from diverse cell types including cell lines, xenografts, and diagnostic samples with limited material. From this resource we have defined variation in mitotic mis-segregation rates across tissue types and genotypes. Analysis of matched genomic and image measurements revealed correlations between cellular morphology and genome ploidy states. Aggregation of cells sharing copy number profiles allowed for calculation of single-nucleotide resolution clonal genotypes and inference of clonal phylogenies and avoided the limitations of bulk deconvolution. Finally, joint analysis over the above features defined clone-specific chromosomal aneuploidy in polyclonal populations.


Asunto(s)
Replicación del ADN/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de la Célula Individual , Aneuploidia , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Forma de la Célula , Supervivencia Celular , Cromosomas Humanos/genética , Células Clonales , Elementos Transponibles de ADN/genética , Diploidia , Femenino , Genotipo , Humanos , Masculino , Ratones , Mutación/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética
2.
Nature ; 612(7938): 106-115, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36289342

RESUMEN

How cell-to-cell copy number alterations that underpin genomic instability1 in human cancers drive genomic and phenotypic variation, and consequently the evolution of cancer2, remains understudied. Here, by applying scaled single-cell whole-genome sequencing3 to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) cells (22,057 genomes), we identify three distinct 'foreground' mutational patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific high-level amplifications, parallel haplotype-specific copy number alterations and copy number segment length variation (serrate structural variations) had measurable phenotypic and evolutionary consequences. In TNBC and HGSC, clone-specific high-level amplifications in known oncogenes were highly prevalent in tumours bearing fold-back inversions, relative to tumours with homologous recombination deficiency, and were associated with increased clone-to-clone phenotypic variation. Parallel haplotype-specific alterations were also commonly observed, leading to phylogenetic evolutionary diversity and clone-specific mono-allelic expression. Serrate variants were increased in tumours with fold-back inversions and were highly correlated with increased genomic diversity of cellular populations. Together, our findings show that cell-to-cell structural variation contributes to the origins of phenotypic and evolutionary diversity in TNBC and HGSC, and provide insight into the genomic and mutational states of individual cancer cells.


Asunto(s)
Genómica , Mutación , Neoplasias Ováricas , Análisis de la Célula Individual , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Filogenia , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
3.
Nature ; 595(7868): 585-590, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163070

RESUMEN

Progress in defining genomic fitness landscapes in cancer, especially those defined by copy number alterations (CNAs), has been impeded by lack of time-series single-cell sampling of polyclonal populations and temporal statistical models1-7. Here we generated 42,000 genomes from multi-year time-series single-cell whole-genome sequencing of breast epithelium and primary triple-negative breast cancer (TNBC) patient-derived xenografts (PDXs), revealing the nature of CNA-defined clonal fitness dynamics induced by TP53 mutation and cisplatin chemotherapy. Using a new Wright-Fisher population genetics model8,9 to infer clonal fitness, we found that TP53 mutation alters the fitness landscape, reproducibly distributing fitness over a larger number of clones associated with distinct CNAs. Furthermore, in TNBC PDX models with mutated TP53, inferred fitness coefficients from CNA-based genotypes accurately forecast experimentally enforced clonal competition dynamics. Drug treatment in three long-term serially passaged TNBC PDXs resulted in cisplatin-resistant clones emerging from low-fitness phylogenetic lineages in the untreated setting. Conversely, high-fitness clones from treatment-naive controls were eradicated, signalling an inversion of the fitness landscape. Finally, upon release of drug, selection pressure dynamics were reversed, indicating a fitness cost of treatment resistance. Together, our findings define clonal fitness linked to both CNA and therapeutic resistance in polyclonal tumours.


Asunto(s)
Variaciones en el Número de Copia de ADN , Resistencia a Antineoplásicos , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Cisplatino/farmacología , Células Clonales/patología , Femenino , Aptitud Genética , Humanos , Ratones , Modelos Estadísticos , Trasplante de Neoplasias , Proteína p53 Supresora de Tumor/genética , Secuenciación Completa del Genoma
4.
Glia ; 69(8): 1966-1986, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33835598

RESUMEN

The importance of Müller glia for retinal homeostasis suggests that they may have vulnerabilities that lead to retinal disease. Here, we studied the effect of selectively knocking down key metabolic genes in Müller glia on photoreceptor health. Immunostaining indicated that murine Müller glia expressed insulin receptor (IR), hexokinase 2 (HK2) and phosphoglycerate dehydrogenase (PHGDH) but very little pyruvate dehydrogenase E1 alpha 1 (PDH-E1α) and lactate dehydrogenase A (LDH-A). We crossed Müller glial cell-CreER (MC-CreER) mice with transgenic mice carrying a floxed IR, HK2, PDH-E1α, LDH-A, or PHGDH gene to study the effect of selectively knocking down key metabolic genes in Müller glia cells on retinal health. Selectively knocking down IR, HK2, or PHGDH led to photoreceptor degeneration and reduced electroretinographic responses. Supplementing exogenous l-serine prevented photoreceptor degeneration and improved retinal function in MC-PHGDH knockdown mice. We unexpectedly found that the levels of retinal serine and glycine were not reduced but, on the contrary, highly increased in MC-PHGDH knockdown mice. Moreover, dietary serine supplementation, while rescuing the retinal phenotypes caused by genetic deletion of PHGDH in Müller glial cells, restored retinal serine and glycine homeostasis probably through regulation of serine transport. No retinal abnormalities were observed in MC-CreER mice crossed with PDH-E1α- or LDH-A-floxed mice despite Cre expression. Our findings suggest that Müller glia do not complete glycolysis but use glucose to produce serine to support photoreceptors. Supplementation with exogenous serine is effective in preventing photoreceptor degeneration caused by PHGDH deficiency in Müller glia.


Asunto(s)
Células Fotorreceptoras , Degeneración Retiniana , Animales , Células Ependimogliales/metabolismo , Ratones , Neuroglía/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Degeneración Retiniana/metabolismo
5.
FASEB J ; 34(3): 4369-4383, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32027418

RESUMEN

In tumor necrosis factor (TNF) signaling, phosphorylation and activation of receptor interacting protein kinase 1 (RIPK1) by upstream kinases is an essential checkpoint in the suppression of TNF-induced cell death. Thus, discovery of pharmacological agents targeting RIPK1 may provide new strategies for improving the therapeutic efficacy of TNF. In this study, we found that 3-O-acetylrubianol C (3AR-C), an arborinane triterpenoid isolated from Rubia philippinesis, promoted TNF-induced apoptotic and necroptotic cell death. To identify the molecular mechanism, we found that in mouse embryonic fibroblasts, 3AR-C drastically upregulated RIPK1 kinase activity by selectively inhibiting IKKß. Notably, 3AR-C did not interfere with IKKα or affect the formation of the TNF receptor1 (TNFR1) complex-I. Moreover, in human cancer cells, 3AR-C was only sufficient to sensitize TNF-induced cell death when c-FLIPL expression was downregulated to facilitate the formation of TNFR1 complex-II and necrosome. Taken together, our study identified a novel arborinane triterpenoid 3AR-C as a potent activator of TNF-induced cell death via inhibition of IKKß phosphorylation and promotion of the cytotoxic potential of RIPK1, thus providing a rationale for further development of 3AR-C as a selective IKKß inhibitor to overcome TNF resistance in cancer therpay.


Asunto(s)
Apoptosis/fisiología , Quinasa I-kappa B/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Humanos , Quinasa I-kappa B/genética , Espectroscopía de Resonancia Magnética , Ratones , Receptor de Muerte Celular Programada 1/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
6.
Diabetologia ; 63(9): 1900-1915, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661752

RESUMEN

AIMS/HYPOTHESIS: Diabetic macular oedema (DME) is the leading cause of visual impairment in people with diabetes. Intravitreal injections of vascular endothelial growth factor inhibitors or corticosteroids prevent loss of vision by reducing DME, but the injections must be given frequently and usually for years. Here we report laboratory and clinical studies on the safety and efficacy of 670 nm photobiomodulation (PBM) for treatment of centre-involving DME. METHODS: The therapeutic effect of PBM delivered via a light-emitting diode (LED) device was tested in transgenic mice in which induced Müller cell disruption led to photoreceptor degeneration and retinal vascular leakage. We also developed a purpose-built 670 nm retinal laser for PBM to treat DME in humans. The effect of laser-delivered PBM on improving mitochondrial function and protecting against oxidative stress was studied in cultured rat Müller cells and its safety was studied in pigmented and non-pigmented rat eyes. We then used the retinal laser to perform PBM in an open-label, dose-escalation Phase IIa clinical trial involving 21 patients with centre-involving DME. Patients received 12 sessions of PBM over 5 weeks for 90 s per treatment at a setting of 25, 100 or 200 mW/cm2 for the three sequential cohorts of 6-8 patients each. Patients were recruited from the Sydney Eye Hospital, over the age of 18 and had centre-involving DME with central macular thickness (CMT) of >300 µm with visual acuity of 75-35 Log minimum angle of resolution (logMAR) letters (Snellen visual acuity equivalent of 20/30-20/200). The objective of this trial was to assess the safety and efficacy of laser-delivered PBM at 2 and 6 months. The primary efficacy outcome was change in CMT at 2 and 6 months. RESULTS: LED-delivered PBM enhanced photoreceptor mitochondrial membrane potential, protected Müller cells and photoreceptors from damage and reduced retinal vascular leakage resulting from induced Müller cell disruption in transgenic mice. PBM delivered via the retinal laser enhanced mitochondrial function and protected against oxidative stress in cultured Müller cells. Laser-delivered PBM did not damage the retina in pigmented rat eyes at 100 mW/cm2. The completed clinical trial found a significant reduction in CMT at 2 months by 59 ± 46 µm (p = 0.03 at 200 mW/cm2) and significant reduction at all three settings at 6 months (25 mW/cm2: 53 ± 24 µm, p = 0.04; 100 mW/cm2: 129 ± 51 µm, p < 0.01; 200 mW/cm2: 114 ± 60 µm, p < 0.01). Laser-delivered PBM was well tolerated in humans at settings up to 200 mW/cm2 with no significant side effects. CONCLUSIONS/INTERPRETATION: PBM results in anatomical improvement of DME over 6 months and may represent a safe and non-invasive treatment. Further testing is warranted in randomised clinical trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT02181400 Graphical abstract.


Asunto(s)
Retinopatía Diabética/radioterapia , Células Ependimogliales/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Edema Macular/radioterapia , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Mitocondrias/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Ratas , Tomografía de Coherencia Óptica
7.
Ann Rheum Dis ; 76(1): 65-71, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26905864

RESUMEN

OBJECTIVES: To evaluate equivalence in efficacy for rheumatoid arthritis (RA) and compare the safety of the biosimilar HD203 with innovator etanercept (ETN) plus methotrexate (MTX) (ClinicalTrials.gov NCT01270997). METHODS: Patients with active RA received 25 mg HD203 or ETN subcutaneously twice-weekly with MTX for 48 weeks in a phase III, multicentre, randomised, double-blind, parallel-group design. The primary end point was the proportion of patients achieving the American College of Rheumatology 20% response (ACR20) at week 24 for per-protocol study completer set (PPS). Secondary end points included ACR response criteria, ACRn, European League against Rheumatism (EULAR) response, change in Disease Activity Score 28 (DAS28), patient-reported outcomes, safety and immunogenicity. RESULTS: Of the 294 randomised patients (HD203, n=147; ETN, n=147), 233 comprised the 24-week PPS (n=115 and 118, respectively). ACR20 at week 24 was achieved by 83.48% and 81.36% of PPS patients, respectively, demonstrating equivalent efficacy within predefined margins of ±20% (treatment difference 2.12%, 95% CI -7.65% to 11.89%). Outcomes for secondary end points were consistent with the primary efficacy findings. Groups were comparable for overall incidences of treatment-emergent (all-causality) adverse events (AEs) (HD203 113 (76.9%) vs ETN 114 (78.1%) (p=0.804)), adverse drug reactions, serious AEs and discontinuations due to AEs. Few patients (HD203, n=8; ETN, n=3) tested positive for anti-drug antibodies. CONCLUSION: The study met the primary objective of demonstrating equivalent efficacy of HD203 and ETN. HD203 was well tolerated, with safety comparable with ETN in this population of patients with RA. TRIAL REGISTRATION NUMBER: NCT01270997; Results.


Asunto(s)
Antirreumáticos/farmacocinética , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Biosimilares Farmacéuticos/farmacocinética , Biosimilares Farmacéuticos/uso terapéutico , Etanercept/farmacocinética , Etanercept/uso terapéutico , Adulto , Anciano , Anticuerpos/sangre , Antirreumáticos/efectos adversos , Antirreumáticos/inmunología , Método Doble Ciego , Quimioterapia Combinada , Etanercept/efectos adversos , Etanercept/inmunología , Femenino , Humanos , Masculino , Metotrexato/uso terapéutico , Persona de Mediana Edad , Equivalencia Terapéutica , Resultado del Tratamiento
8.
Chem Biodivers ; 14(11)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28805952

RESUMEN

The arial parts of Scutellaria barbata D. Don (Lamiaceae) efficiently inhibited NO production in BV2 microglial cells, and the active constituents were further isolated based on activity-guided isolation using silica-gel column chromatography, RP-C18 MPLC and prep-HPLC. As the results, 2 flavonoids including 6-methoxynaringenin (1) and 6-O-methylscutellarein (5), and 6 neo-clerodane diterpenes such as scutebarbatine W (2), scutebatas B (3), scutebarbatine B (4), scutebarbatine A (6), 6-O-nicotinolylscutebarbatine G (7), and scutebarbatine X (8) were isolated. The structures of these compounds were elucidated based on NMR and MS data, and the comparison of literature values. All the compounds except compound 7 inhibited NO production efficiently with IC50 values of lower than 50 µm. Particularly, compounds 1 and 8 were the most efficient with IC50 values of 25.8 and 27.4 µm, respectively. This is the first report suggesting the potential of S. barbata on the reduction of neuroinflammation.


Asunto(s)
Óxido Nítrico/metabolismo , Scutellaria/química , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Lipopolisacáridos/toxicidad , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Microglía/metabolismo , Conformación Molecular , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/metabolismo , Extractos Vegetales/química , Scutellaria/metabolismo
9.
Int J Mol Sci ; 18(3)2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28257068

RESUMEN

Anti-vascular endothelial growth factor (VEGF) therapy has revolutionized the treatment of retinal vascular diseases. However, constitutive VEGF also acts as a trophic factor on retinal nonvascular cells. We have studied the effects of aflibercept and ranibizumab on human Müller cells and photoreceptors exposed to starvation media containing various concentrations of glucose, with or without CoCl2-induced hypoxia. Cell survival was assessed by calcein-AM cell viability assays. Expression of heat shock proteins (Hsp) and redox proteins thioredoxin 1 and 2 (TRX1, TRX2) was studied by Western blots. The production of neurotrophic factors in Müller cells and interphotoreceptor retinoid-binding protein (IRBP) in photoreceptors was measured by enzymelinked immunosorbent assays. Aflibercept and ranibizumab did not affect the viability of both types of cells. Neither aflibercept nor ranibizumab affected the production of neurotrophic factors or expression of Hsp60 and Hsp90 in Müller cells. However, aflibercept but not ranibizumab affected the expression of Hsp60, Hsp9, TRX1 and TRX2 in photoreceptors. Aflibercept and ranibizumab both inhibited the production of IRBP in photoreceptors, aflibercept more so than ranibizumab. Our data indicates that the potential influence of aflibercept and ranibizumab on photoreceptors should be specifically monitored in clinical studies.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/metabolismo , Ranibizumab/farmacología , Proteínas Recombinantes de Fusión/farmacología , Estrés Fisiológico , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas del Ojo/metabolismo , Expresión Génica , Glucosa/farmacología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Hipoxia/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular , Proteínas de Unión al Retinol/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
10.
Heart Lung Circ ; 26(5): 519-523, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27743854

RESUMEN

BACKGROUND: Exenatide exerts cardioprotective effects by attenuating ischaemic reperfusion (IR) injury, possibly through activating the opening of mitochondrial ATP-sensitive potassium channels. We used atomic force microscopy (AFM) to investigate changes in mitochondrial morphology and properties in order to assess exenatide-mediated cardioprotection in IR injury. METHODS: We used an in vivo Sprague-Dawley rat IR model and ex vivo Langendorff injury model. In the left anterior descending artery (LAD) occlusion model, animals were randomly divided into three groups: sham-operated rats (Sham, n=5), IR-injured rats treated with placebo (IR, n=6), and IR-injured treated with exenatide (IR + EXE, n=6). For the Langendorff model, rats were randomly divided into two groups: IR injury with placebo (IR, n=4) and IR injury with exenatide (IR+EXE, n=4). Morphological and mechanical changes of mitochondria were analysed by AFM. RESULTS: Exenatide pre-treatment improved cardiac function as evidenced by improvement in echocardiographic results. The ratio of infarct area (IA) to risk area (RA) was significantly reduced in exenatide-treated rats. According to AFM, IR significantly increased the area of isolated mitochondria, indicative of mitochondrial swelling. Treatment with exenatide reduced the mitochondrial area and ameliorated the adhesion force of mitochondrial surfaces. CONCLUSIONS: Exenatide pre-treatment improves morphological and mechanical characteristics of mitochondria in response to IR injury in a rat model. These alterations in mitochondrial characteristics appear to play a cardioprotective role against IR injury.


Asunto(s)
Ecocardiografía , Mitocondrias Cardíacas , Daño por Reperfusión Miocárdica , Péptidos/farmacología , Ponzoñas/farmacología , Animales , Modelos Animales de Enfermedad , Exenatida , Masculino , Microscopía de Fuerza Atómica , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/fisiopatología , Ratas , Ratas Sprague-Dawley
11.
J Cell Sci ; 126(Pt 1): 67-76, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23203799

RESUMEN

Transforming growth factor ß1 (TGF-ß1) is known to be both anti-inflammatory and profibrotic. Cross-talk between TGF-ß/Smad and Wnt/ß-catenin pathways in epithelial-mesenchymal transition (EMT) suggests a specific role for ß-catenin in profibrotic effects of TGF-ß1. However, no such mechanistic role has been demonstrated for ß-catenin in the anti-inflammatory effects of TGF-ß1. In the present study, we explored the role of ß-catenin in the profibrotic and anti-inflammatory effects of TGF-ß1 by using a cytosolic, but not membrane, ß-catenin knockdown chimera (F-TrCP-Ecad) and the ß-catenin/CBP inhibitor ICG-001. TGF-ß1 induced nuclear Smad3/ß-catenin complex, but not ß-catenin/LEF-1 complex or TOP-flash activity, during EMT of C1.1 (renal tubular epithelial) cells. F-TrCP-Ecad selectively degraded TGF-ß1-induced cytoplasmic ß-catenin and blocked EMT of C1.1 cells. Both F-TrCP-Ecad and ICG-001 blocked TGF-ß1-induced Smad3/ß-catenin and Smad reporter activity in C1.1 cells, suggesting that TGF-ß1-induced EMT depends on ß-catenin binding to Smad3, but not LEF-1 downstream of Smad3, through canonical Wnt. In contrast, in J774 macrophages, the ß-catenin level was low and was not changed by interferon-γ (IFN-γ) or lipopolysaccharide (LPS) with or without TGF-ß1. TGF-ß1 inhibition of LPS-induced TNF-α and IFN-γ-stimulated inducible NO synthase (iNOS) expression was not affected by F-TrCP-Ecad, ICG-001 or by overexpression of wild-type ß-catenin in J774 cells. Inhibition of ß-catenin by either F-TrCP-Ecad or ICG-001 abolished LiCl-induced TOP-flash, but not TGF-ß1-induced Smad reporter, activity in J774 cells. These results demonstrate for the first time that ß-catenin is required as a co-factor of Smad in TGF-ß1-induced EMT of C1.1 epithelial cells, but not in TGF-ß1 inhibition of macrophage activation. Targeting ß-catenin may dissociate the TGF-ß1 profibrotic and anti-inflammatory effects.


Asunto(s)
Antiinflamatorios/farmacología , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , beta Catenina/metabolismo , Animales , Western Blotting , Línea Celular , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Inmunoprecipitación , Factor de Unión 1 al Potenciador Linfoide/genética , Ratones , Microscopía Fluorescente , Unión Proteica/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína smad3/genética , beta Catenina/genética
12.
Org Biomol Chem ; 13(16): 4652-6, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25793456

RESUMEN

Inspired by the Hegedus aza-Wacker indole synthesis, we were intrigued with the fate of the aminopalladation intermediate if syn ß-hydrogen is made inaccessible or unavailable. In contrast to our previously reported ß-carbon elimination, cyclization of a variety of 2-alkenylaniline substrates under electrophilic palladium conditions unexpectedly afforded C3-substituted indoles. This unusual 1,2-migratory process was found to be operative across a variety of substrates with predictable migratory aptitude. A mechanistic proposal was put forward to rationalize the observed substrate dependence, and this unexpected finding could provide an opportunity for other related processes.

13.
Heart Vessels ; 30(1): 115-25, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24510253

RESUMEN

Lysophosphatidylcholine (LPC) generated from oxidized low-density lipoprotein by lipoprotein-associated phospholipase A2 plays a key role in plaque inflammation and vulnerability. Endothelial progenitor cells (EPCs) can repair injured endothelium and exert anti-inflammatory effects of vulnerable plaque. We study the impact and mechanisms of LPC on UEA-1 and acLDL binding EPCs (UEA-1(+)acLDL(+) EPCs). UEA-1(+)acLDL(+) EPCs from coronary artery disease (CAD) patients were cultured and exposed to LPC at different concentrations and different timepoints. We determined the significant concentration (40 µM). UEA-1(+)acLDL(+) EPCs were preincubated for 30 min with pravastatin (20 µM) with LY249002, a specific inhibitor of the Akt signaling pathway, and exposed for 24 h to LPC 40 µM. The survival, migration, adhesion, and proliferation of UEA-1(+)acLDL(+) EPCs were assessed. To examine the mechanisms of LPC toxicity and pravastatin effects, phosphorylated Akt and endothelial nitric oxide synthase (eNOS) levels and the ratio of Bcl-2/Bax protein expression were assessed. LPC induced apoptosis and impaired migration and adhesion of UEA-1(+)acLDL(+) EPCs significantly. The detrimental effects of LPC were attenuated by pravastatin. However, when UEA-1(+)acLDL(+) EPCs were pretreated with pravastatin and LY249002, a specific inhibitor of the Akt signaling pathway, simultaneously, the beneficial effects of pravastatin were abolished. Furthermore, LPC suppressed Akt and eNOS phosphorylation and increased Bcl-2/Bax expression. The effects of LPC on Akt/eNOS and Bcl-2/Bax activity were reversed by pravastatin. In conclusion, LPC inhibited UEA-1(+)acLDL(+) EPCs survival and impaired its functions, and these were attributable to inhibition of the Akt/eNOS and Bcl-2/Bax pathway. Pravastatin reversed the detrimental action of LPC. These findings suggest that LPC inhibition can be a possible strategy for CAD through EPC revitalization.


Asunto(s)
Enfermedad de la Arteria Coronaria/fisiopatología , Células Progenitoras Endoteliales/efectos de los fármacos , Lipoproteínas LDL/metabolismo , Lisofosfatidilcolinas/antagonistas & inhibidores , Lectinas de Plantas/metabolismo , Pravastatina/farmacología , Apoptosis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Células Progenitoras Endoteliales/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Lipoproteínas LDL/antagonistas & inhibidores , Lisofosfatidilcolinas/toxicidad , Masculino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo
14.
Glia ; 62(7): 1110-24, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687761

RESUMEN

Retinal diseases such as macular telangiectasis type 2 (MacTel), age-related macular degeneration (AMD) and diabetic retinopathy (DR) affect both neurons and blood vessels. Treatments addressing both at the same time might have advantages over more specific approaches, such as vascular endothelial growth factor (VEGF) inhibitors, which are used to treat vascular leak but are suspected to have a neurotoxic effect. Here, we studied the effects of an intravitreal injection of triamcinolone acetonide (TA) in a transgenic model in which patchy Müller cell ablation leads to photoreceptor degeneration, vascular leak, and intraretinal neovascularization. TA was injected 4 days before Müller cell ablation. Changes in photoreceptors, microglia and Müller cells, retinal vasculature, differential expression of p75 neurotrophin receptor (p75(NTR) ), tumor necrosis factor-α (TNFα), the precursor and mature forms of neurotrophin 3 (pro-NT3 and mature NT3) and activation of the p53 and p38 stress-activated protein kinase (p38/SAPK) signaling pathways were examined. We found that TA prevented photoreceptor degeneration and inhibited activation of microglial and Müller cells. TA attenuated Müller cell loss and inhibited overexpression of p75(NTR) , TNFα, pro-NT, and the activation of p53 and p38/SAPK signaling pathways. TA not only prevented the development of retinal vascular lesions but also inhibited fluorescein leakage from established vascular lesions. TA inhibited overexpression of VEGF in transgenic mice but without affecting its basal level expression in the normal retina. Our data suggest that glucocorticoid treatment may be beneficial for treatment of retinal diseases such as MacTel, AMD, and DR that affect both neurons and the vasculature.


Asunto(s)
Células Ependimogliales/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Enfermedades de la Retina/tratamiento farmacológico , Vasos Retinianos/efectos de los fármacos , Triamcinolona Acetonida/farmacología , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Ependimogliales/patología , Células Ependimogliales/fisiología , Gliosis/tratamiento farmacológico , Gliosis/patología , Gliosis/fisiopatología , Glucocorticoides/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/patología , Microglía/fisiología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Neurotrofina 3/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Células Fotorreceptoras de Vertebrados/fisiología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Enfermedades de la Retina/patología , Enfermedades de la Retina/fisiopatología , Vasos Retinianos/patología , Vasos Retinianos/fisiopatología , Tamoxifeno , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Clin Exp Pharmacol Physiol ; 41(10): 763-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25115773

RESUMEN

Sildenafil exerts cardioprotective effects by activating the opening of mitochondrial ATP-sensitive potassium channels to attenuate ischaemia-reperfusion (IR) injury. In the present study, we used atomic force microscopy (AFM) to investigate changes in mitochondrial morphology and properties to assess sildenafil-mediated cardioprotection in a rat myocardial infarction model. To investigate the cardioprotective effects of sildenafil, we used an in vivo Sprague-Dawley rat model of IR. Rats were randomly divided into three groups: (i) sham-operated rats (control; n = 5); (ii) IR-injured rats treated with vehicle (normal saline; IR; n = 10); and (iii) IR-injured rats treated with 0.75 mg/kg, i.p., sildenafil (IR + Sil; n = 10). Morphological and mechanical changes to mitochondria were analysed by AFM. Infarct areas were significantly reduced in sildenafil-treated rats (7.8 ± 3.9% vs 20.4 ± 7.0% in the sildenafil-treated and untreated IR groups, respectively; relative reduction 62%; P < 0.001). Analysis of mitochondria by AFM showed that IR injury significantly increased the areas of isolated mitochondria compared with control (24 150 ± 18 289 vs 1495 ± 1139 nm(2) , respectively; P < 0.001), indicative of mitochondrial swelling. Pretreatment with sildenafil before IR injury reduced the mitochondrial areas (7428 ± 3682 nm(2) ; P < 0.001; relative reduction 69.2% compared with the IR group) and ameliorated the adhesion force of mitochondrial surfaces. Together, these results suggest that sildenafil has cardioprotective effects against IR injury in a rat model by improving the morphological and mechanical characteristics of mitochondria.


Asunto(s)
Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/ultraestructura , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/ultraestructura , Piperazinas/farmacología , Daño por Reperfusión/tratamiento farmacológico , Sulfonamidas/farmacología , Animales , Mitocondrias Cardíacas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Canales de Potasio/metabolismo , Purinas/farmacología , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Citrato de Sildenafil
16.
Lab Invest ; 93(4): 434-49, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23358111

RESUMEN

A pro-fibrotic role of matrix metalloproteinase-9 (MMP-9) in tubular cell epithelial-mesenchymal transition (EMT) is well established in renal fibrosis; however studies from our group and others have demonstrated some previously unrecognized complexity of MMP-9 that has been overlooked in renal fibrosis. Therefore, the aim of this study was to determine the expression pattern, origin and the exact mechanism underlying the contribution of MMP-9 to unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis via MMP-9 inhibition. Renal MMP-9 expression in BALB/c mice with UUO was examined on day 1, 3, 5, 7, 9, 11 and 14. To inhibit MMP-9 activity, MMP-2/9 inhibitor or MMP-9-neutralizing antibody was administered daily for 4 consecutive days from day 0-3, 6-9 or 10-13 and tissues harvested at day 14. In UUO, there was a bi-phasic early- and late-stage upregulation of MMP-9 activity. Interestingly, tubular epithelial cells (TECs) were the predominant source of MMP-9 during early stage, whereas TECs, macrophages and myofibroblasts produced MMP-9 during late-stage UUO. Early- and late-stage inhibition of MMP-9 in UUO mice significantly reduced tubular cell EMT and renal fibrosis. Moreover, MMP-9 inhibition caused a significant reduction in MMP-9-cleaved osteopontin and macrophage infiltration in UUO kidney. Our in vitro study showed MMP-9-cleaved osteopontin enhanced macrophage transwell migration and MMP-9 of both primary TEC and macrophage induced tubular cell EMT. In summary, our result suggests that MMP-9 of both TEC and macrophage origin may directly or indirectly contribute to the pathogenesis of renal fibrosis via osteopontin cleavage, which, in turn further recruit macrophage and induce tubular cell EMT. Our study also highlights the time dependency of its expression and the potential of stage-specific inhibition strategy against renal fibrosis.


Asunto(s)
Enfermedades Renales/inmunología , Riñón/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Osteopontina/metabolismo , Obstrucción Ureteral/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Células Epiteliales/fisiología , Transición Epitelial-Mesenquimal , Fibrosis , Riñón/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Macrófagos/fisiología , Ratones , Ratones Endogámicos BALB C , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo , beta Catenina/metabolismo
17.
J Neuroinflammation ; 10: 137, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24224958

RESUMEN

BACKGROUND: Neurotrophins can regulate opposing functions that result in cell survival or apoptosis, depending on which form of the protein is secreted and which receptor and signaling pathway is activated. We have recently developed a transgenic model in which inducible and patchy Müller cell ablation leads to photoreceptor degeneration. This study aimed to examine the roles of mature neurotrophin-3 (NT3), pro-NT3 and p75 neurotrophin receptor (P75(NTR)) in photoreceptor degeneration in this model. METHODS: Transgenic mice received tamoxifen to induce Müller cell ablation. Changes in the status of Müller and microglia cells as well as expression of mature NT3, pro-NT3 and P75(NTR) were examined by immunohistochemistry and Western blot analysis. Recombinant mature NT3 and an antibody neutralizing 75(NTR) were injected intravitreally 3 and 6 days after Müller cell ablation to examine their effects on photoreceptor degeneration and microglial activation. RESULTS: We found that patchy loss of Müller cells was associated with activation of surviving Müller cells and microglial cells, concurrently with reduced expression of mature NT3 and upregulation of pro-NT3 and P75(NTR). Intravitreal injection of mature NT3 and a neutralizing antibody to P75NTR, either alone or in combination, attenuated photoreceptor degeneration and the beneficial effect was associated with inhibition of microglial activation. CONCLUSIONS: Our data suggest that Müller cell ablation alters the balance between the protective and deleterious effects of mature NT3 and pro-NT3. Modulation of the neuroprotective action of mature NT3 and pro-apoptotic pro-NT3/P75(NTR) signaling may represent a novel pharmacological strategy for photoreceptor protection in retinal disease.


Asunto(s)
Neurotrofina 3/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Degeneración Retiniana/metabolismo , Animales , Western Blotting , Células Ependimogliales/patología , Inmunohistoquímica , Ratones , Ratones Transgénicos , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patología , Degeneración Retiniana/patología
18.
Appl Microbiol Biotechnol ; 93(3): 1147-56, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21959378

RESUMEN

A 14-membered macrolide antibiotic narbomycin produced from Streptomyces venezuelae ATCC 15439 is composed of polyketide macrolactone ring and D-desosamine as a deoxysugar moiety, which acts as an important determinant of its antibacterial activity. In order to generate diverse glycosylated derivatives of narbomycin, expression plasmids carrying different deoxysugar biosynthetic gene cassettes and the gene encoding a substrate-flexible glycosyltransferase DesVII were constructed and introduced into S. venezuelae YJ003 mutant strain bearing a deletion of thymidine-5'-diphospho-D-desosamine biosynthetic gene cluster. The resulting recombinants of S. venezuelae produced a range of new analogs of narbomycin, which possess unnatural sugar moieties instead of native deoxysugar D-desosamine. The structures of narbomycin derivatives were determined through nuclear magnetic resonance spectroscopy and mass spectrometry analyses and their antibacterial activities were evaluated in vitro against erythromycin-susceptible and -resistant Enterococcus faecium and Staphylococcus aureus. Substitution with L-rhamnose or 3-O-demethyl-D-chalcose was demonstrated to exhibit greater antibacterial activity than narbomycin and the clinically relevant erythromycin. This work provides new insight into the functions of deoxysugar biosynthetic enzymes and structure-activity relationships of the sugar moieties attached to the macrolides and demonstrate the potential of combinatorial biosynthesis for the generation of new macrolides carrying diverse sugars with increased antibacterial activities.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Ingeniería Genética/métodos , Macrólidos/metabolismo , Macrólidos/farmacología , Streptomyces/metabolismo , Antibacterianos/química , Enterococcus faecium/efectos de los fármacos , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Macrólidos/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Mutación , Plásmidos , Staphylococcus aureus/efectos de los fármacos , Streptomyces/enzimología , Streptomyces/genética , Relación Estructura-Actividad
19.
Sci Rep ; 12(1): 19312, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369267

RESUMEN

The common final pathway to blindness in many forms of retinal degeneration is the death of the light-sensitive primary retinal neurons. However, the normally light-insensitive second- and third-order neurons persist optogenetic gene therapy aims to restore sight by rendering such neurons light-sensitive. Here, we investigate whether bReaChES, a newly described high sensitivity Type I opsin with peak sensitivity to long-wavelength visible light, can restore vision in a murine model of severe early-onset retinal degeneration. Intravitreal injection of an adeno-associated viral vector carrying the sequence for bReaChES downstream of the calcium calmodulin kinase IIα promoter resulted in sustained retinal expression of bReaChES. Retinal ganglion cells (RGCs) expressing bReaChES generated action potentials at light levels consistent with bright indoor lighting (from 13.6 log photons cm-2 s-1). They could also detect flicker at up to 50 Hz, which approaches the upper temporal limit of human photopic vision. Topological response maps of bReaChES-expressing RGCs suggest that optogenetically activated RGCs may demonstrate similar topographical responses to RGCs stimulated by photoreceptor activation. Furthermore, treated dystrophic mice displayed restored cortical neuronal activity in response to light and rescued behavioral responses to a looming stimulus that simulated an aerial predator. Finally, human surgical retinal explants exposed to the bReaChES treatment vector demonstrated transduction. Together, these findings suggest that intravitreal gene therapy to deliver bReaChES to the retina may restore vision in human retinal degeneration in vivo at ecologically relevant light levels with spectral and temporal response characteristics approaching those of normal human photopic vision.


Asunto(s)
Degeneración Retiniana , Ratones , Humanos , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Degeneración Retiniana/metabolismo , Optogenética/métodos , Opsinas de Bastones/metabolismo , Células Ganglionares de la Retina/metabolismo
20.
Redox Biol ; 54: 102379, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35779441

RESUMEN

The Pentose Phosphate Pathway (PPP), a metabolic offshoot of the glycolytic pathway, provides protective metabolites and molecules essential for cell redox balance and survival. Transketolase (TKT) is the critical enzyme that controls the extent of "traffic flow" through the PPP. Here, we explored the role of TKT in maintaining the health of the human retina. We found that Müller cells were the primary retinal cell type expressing TKT in the human retina. We further explored the role of TKT in human Müller cells by knocking down its expression in primary cultured Müller cells (huPMCs), isolated from the human retina (11 human donors in total), under light-induced oxidative stress. TKT knockdown and light stress reduced TKT enzymatic activities and the overall metabolic activities of huPMCs with no detectable cell death. TKT knockdown restrained the PPP traffic flow, reduced the expression of NAD(P)H Quinone Dehydrogenase 1 (NQO1), impaired the antioxidative response of NRF2 to light stress and aggravated the endoplasmic reticulum (ER) stress. TKT knockdown also inhibited overall glucose intake, reduced expression of Dihydrolipoamide dehydrogenase (DLD) and impaired the energy supply of the huPMCs. In summary, Müller cell-mediated TKT activity plays a critical protective role in the stressed retina. Knockdown of TKT disrupted the PPP and impaired overall glucose utilisation by huPMCs and rendered huPMCs more vulnerable to light stress by impairing energy supply and antioxidative NRF2 responses.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Transcetolasa , Células Ependimogliales/metabolismo , Glucosa/metabolismo , Humanos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Vía de Pentosa Fosfato , Pentosas , Fosfatos , Transcetolasa/genética , Transcetolasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA