Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Am Chem Soc ; 145(32): 17643-17655, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37540107

RESUMEN

Developing low platinum-group-metal (PGM) catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs) for heavy-duty vehicles (HDVs) remains a great challenge due to the highly demanded power density and long-term durability. This work explores the possible synergistic effect between single Mn site-rich carbon (MnSA-NC) and Pt nanoparticles, aiming to improve intrinsic activity and stability of PGM catalysts. Density functional theory (DFT) calculations predicted a strong coupling effect between Pt and MnN4 sites in the carbon support, strengthening their interactions to immobilize Pt nanoparticles during the ORR. The adjacent MnN4 sites weaken oxygen adsorption at Pt to enhance intrinsic activity. Well-dispersed Pt (2.1 nm) and ordered L12-Pt3Co nanoparticles (3.3 nm) were retained on the MnSA-NC support after indispensable high-temperature annealing up to 800 °C, suggesting enhanced thermal stability. Both PGM catalysts were thoroughly studied in membrane electrode assemblies (MEAs), showing compelling performance and durability. The Pt@MnSA-NC catalyst achieved a mass activity (MA) of 0.63 A mgPt-1 at 0.9 ViR-free and maintained 78% of its initial performance after a 30,000-cycle accelerated stress test (AST). The L12-Pt3Co@MnSA-NC catalyst accomplished a much higher MA of 0.91 A mgPt-1 and a current density of 1.63 A cm-2 at 0.7 V under traditional light-duty vehicle (LDV) H2-air conditions (150 kPaabs and 0.10 mgPt cm-2). Furthermore, the same catalyst in an HDV MEA (250 kPaabs and 0.20 mgPt cm-2) delivered 1.75 A cm-2 at 0.7 V, only losing 18% performance after 90,000 cycles of the AST, demonstrating great potential to meet the DOE targets.

2.
Nat Mater ; 21(7): 795-803, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35501365

RESUMEN

Intercalation-type metal oxides are promising negative electrode materials for safe rechargeable lithium-ion batteries due to the reduced risk of Li plating at low voltages. Nevertheless, their lower energy and power density along with cycling instability remain bottlenecks for their implementation, especially for fast-charging applications. Here, we report a nanostructured rock-salt Nb2O5 electrode formed through an amorphous-to-crystalline transformation during repeated electrochemical cycling with Li+. This electrode can reversibly cycle three lithiums per Nb2O5, corresponding to a capacity of 269 mAh g-1 at 20 mA g-1, and retains a capacity of 191 mAh g-1 at a high rate of 1 A g-1. It exhibits superb cycling stability with a capacity of 225 mAh g-1 at 200 mA g-1 for 400 cycles, and a Coulombic efficiency of 99.93%. We attribute the enhanced performance to the cubic rock-salt framework, which promotes low-energy migration paths. Our work suggests that inducing crystallization of amorphous nanomaterials through electrochemical cycling is a promising avenue for creating unconventional high-performance metal oxide electrode materials.

3.
Phys Chem Chem Phys ; 25(10): 7144-7153, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36786715

RESUMEN

Pt3Zn1 and Pt1Zn1 intermetallic nanoparticles supported on SiO2 were synthesized by combining atomic layer deposition (ALD) of ZnO, incipient wetness impregnation (IWI) of Pt, and appropriate hydrogen reduction. The formation of Pt1Zn1 and Pt3Zn1 intermetallic nanoparticles was observed by both X-ray diffraction (XRD) and synchrotron X-ray absorption spectroscopy (XAS). STEM images showed that the 2-3 nm Pt-based intermetallic nanoparticles were uniformly dispersed on a SiO2 support. The relationships between Pt-Zn intermetallic phases and synthesis conditions were established. In situ XAS measurements at Pt L3 and Zn K edges during hydrogen reduction provided a detailed image of surface species evolution. Owing to a combined electronic and geometric effect, Pt1Zn1 exhibited much higher reactivity and stability than Pt3Zn1 and Pt in both the direct dehydrogenation and oxidative dehydrogenation of ethane to ethylene reactions.

4.
Nature ; 551(7682): 605-608, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29189776

RESUMEN

An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid, which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. We find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolite-supported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. We anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol, acetic acid and other useful chemicals.

5.
Phys Rev Lett ; 128(10): 106402, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35333078

RESUMEN

When Fermi surfaces (FSs) are subject to long-range interactions that are marginal in the renormalization-group sense, Landau Fermi liquids are destroyed, but only barely. With the interaction further screened by particle-hole excitations through one-loop quantum corrections, it has been believed that these marginal Fermi liquids (MFLs) are described by weakly coupled field theories at low energies. In this Letter, we point out a possibility in which higher-loop processes qualitatively change the picture through UV-IR mixing, in which the size of the FS enters as a relevant scale. The UV-IR mixing effect enhances the coupling at low energies, such that the basin of attraction for the weakly coupled fixed point of a (2+1)-dimensional MFL shrinks to a measure-zero set in the low-energy limit. This UV-IR mixing is caused by gapless virtual Cooper pairs that spread over the entire FS through marginal long-range interactions. Our finding signals a possible breakdown of the patch description for the MFL and questions the validity of using the MFL as the base theory in a controlled scheme for non-Fermi liquids that arise from relevant long-range interactions.

6.
Nature ; 534(7606): 231-4, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279218

RESUMEN

Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

7.
J Am Chem Soc ; 143(27): 10441-10453, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34213315

RESUMEN

We report the synthesis of new carbon-nanomaterial-based metal chelates that enable effective electronic coupling to electrocatalytic transition metals. In particular, multiwalled carbon nanotubes (MWCNTs) and few-layered graphene (FLG) were covalently functionalized by a microwave-assisted cycloaddition with nitrile oxides to form metal-binding isoxazoline functional groups with high densities. The covalent attachment was evidenced by Raman spectroscopy, and the chemical identity of the surface functional groups was confirmed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The functional carbon nanomaterials effectively chelate precious metals Ir(III), Pt(II), and Ru(III), as well as earth-abundant metals such as Ni(II), to afford materials with metal contents as high as 3.0 atom %. The molecularly dispersed nature of the catalysts was confirmed by X-ray absorption spectroscopy (XAS) and energy-dispersive X-ray spectroscopy (STEM-EDS) elemental mapping. The interplay between the chelate structure on the graphene surface and its metal binding ability has also been investigated by a combination of experimental and computational studies. The defined ligands on the graphene surfaces enable the formation of structurally precise heterogeneous molecular catalysts. The direct attachment of the isoxazoline functional group on the graphene surfaces provides strong electronic coupling between the chelated metal species and the conductive carbon nanomaterial support. We demonstrate that the metal-chelated carbon nanomaterials are effective heterogeneous catalysts in the oxygen evolution reaction with low overpotentials and tunable catalytic activity.

8.
Molecules ; 26(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063489

RESUMEN

We present the intra- and inter-molecular organocatalysis of SN2 fluorination using CsF by crown ether to estimate the efficacy of the promoter and to elucidate the reaction mechanism. The yields of intramolecular SN2 fluorination of the veratrole substrates are measured to be very small (<1% in 12 h) in the absence of crown ether promoters, whereas the SN2 fluorination of the substrate possessing a crown ether unit proceeds to near completion (~99%) in 12 h. We also studied the efficacy of intermolecular rate acceleration by an independent promoter 18-crown-6 for comparison. We find that the fluorinating yield of a veratrole substrate (leaving group = -OMs) in the presence of 18-crown-6 follows the almost identical kinetic course as that of intramolecular SN2 fluorination, indicating the mechanistic similarity of intra- and inter-molecular organocatalysis of the crown ether for SN2 fluorination. The calculated relative Gibbs free energies of activation for these reactions, in which the crown ether units act as Lewis base promoters for SN2 fluorination, are in excellent agreement with the experimentally measured yields of fluorination. The role of the metal salt CsF is briefly discussed in terms of whether it reacts as a contact ion pair or as a "free" nucleophile F-.

9.
Angew Chem Int Ed Engl ; 60(2): 976-982, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-32978880

RESUMEN

Shape-selective catalysis plays a key role in chemical synthesis. Porous nanomaterials with uniform pore structures are ideal supports for metal nanoparticles (MNPs) to generate efficient shape-selective catalysis. However, many commercial irregular porous nanomaterials face the challenge to realize satisfactory shape selectivity due to the lack of molecular sieving structures. Herein, we report a concept of creating shape selectivity in MNPs/porous nanomaterials through intentionally poisoning certain MNPs using suitable modifiers. The remaining MNPs within the substrates can cooperate with the channels to generate selectivity. Such a strategy not only applies to regular porous nanomaterials (such as MOFs, zeolites) but also extended to irregular porous nanomaterials (such as active carbon, P25). Potentially, the matching among different MNPs, corresponding modifiers, and porous nanomaterials makes our strategy promising in selective catalytic systems.

10.
J Am Chem Soc ; 142(35): 14966-14973, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786761

RESUMEN

The search for batteries with high energy density has highlighted lithium-rich manganese-based layered oxides due to their exceptionally high capacity. Although it is clear that both cationic and anionic redox are present in the charge compensation mechanism, the microstructural evolution of the Li2MnO3-like phase during anionic redox and its role in battery performance and structural stability are still not fully understood. Here, we systematically probe microstructural evolution using spatially resolved synchrotron X-ray measurements and reveal an underlying interaction between the Li2MnO3-like domains and bulk rhombohedral structure. Mn ion activation and a previously unobserved structural distortion are discovered at high voltages, and can be related to structural strain present in the Li2MnO3-like phase upon substantial lithium ion extraction. Moreover, we elucidate a correlation between this structural distortion and irreversible phase transitions by thermally perturbing delithiated samples. These insights highlight a pathway toward achieving high capacity cathode materials required for future commercial applications.

11.
Anal Chem ; 92(20): 13961-13970, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32959648

RESUMEN

Technetium-99 (Tc), a high yield fission product generated in nuclear reactors, is one of the most difficult contaminants to address at the U.S. Department of Energy Hanford, Savannah River, and other sites. In strongly alkaline solutions typifying Hanford tank waste, Tc exists as pertechnetate (TcO4-) (oxidation state VII) as well as in reduced forms (oxidation state < VII), collectively known as non-pertechnetate (non-TcO4-) species. Designing strategies for effective Tc management, including separation and immobilization, necessitates understanding the molecular structure of the non-TcO4- species and their identification in actual tank waste samples. Identification of non-TcO4- species would facilitate the development of new treatment technologies effective for dissimilar Tc species. Toward this objective, a spectroscopic library of the Tc(I) [fac-Tc(CO)3]+ and Tc(II, IV, V, VII) compounds was generated and applied to the characterization of the actual Hanford AN-102 tank waste supernatant, which was processed to adjust Na concentration to ∼5.6 M and remove 137Cs by spherical resorcinol-formaldehyde (sRF) ion-exchange resin. Post 137Cs removal, the cesium-loaded sRF column was eluted with 0.45 M HNO3. As-received AN-102, Cs-depleted effluent, and sRF eluate fractions were comprehensively characterized for chemical composition and speciation of Tc using 99Tc nuclear magnetic resonance spectroscopy and X-ray absorption spectroscopy. It was demonstrated for the first time that non-TcO4- Tc present in the AN-102 tank waste is composed of several low-valent Tc species, including the Tc(I) [fac-Tc(CO)3]+ and Tc(IV) compounds. This is the first demonstration of multiple non-TcO4- species co-existing in the Hanford tank waste, highlighting their importance for the waste processing.

12.
Phys Rev Lett ; 124(13): 137002, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32302191

RESUMEN

We propose a new principle to realize flatbands which are robust in real materials, based on a network superstructure of one-dimensional segments. This mechanism is naturally realized in the nearly commensurate charge-density wave of 1T-TaS_{2} with the honeycomb network of conducting domain walls, and the resulting flatband can naturally explain the enhanced superconductivity. We also show that corner states, which are a hallmark of the higher-order topological insulators, appear in the network superstructure.

13.
J Chem Phys ; 152(8): 084703, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32113354

RESUMEN

The metal-organic framework (MOF), NU-1000, and its metalated counterparts have found proof-of-concept application in heterogeneous catalysis and hydrogen storage among others. A vapor-phase technique, akin to atomic layer deposition (ALD), is used to selectively deposit divalent Cu ions on oxo, hydroxo-bridged hexa-zirconium(IV) nodes capped with terminal -OH and -OH2 ligands. The subsequent reaction with steam yields node-anchored, CuII-oxo, hydroxo clusters. We find that cluster installation via AIM (ALD in MOFs) is accompanied by an expansion of the MOF mesopore (channel) diameter. We investigated the behavior of the cluster-modified material, termed Cu-AIM-NU-1000, to heat treatment up to 325 °C at atmospheric pressure with a low flow of H2 into the reaction cell. The response under these conditions revealed two important results: (1) Above 200 °C, the initially installed few-metal-ion clusters reduce to neutral Cu atoms. The neutral atoms migrate from the nodes and aggregate into Cu nanoparticles. While the size of particles formed in the MOF interior is constrained by the width of mesopores (∼3 nm), the size of those formed on the exterior surface of the MOF can grow as large as ∼8 nm. (2) Reduction and release of Cu atoms from the MOFs nodes is accompanied by the dynamic structural transformation of NU-1000 as it reverts back to its original dimension following the release. These results show that while the MOF framework itself remains intact at 325 °C in an H2 atmosphere, the small, AIM-installed CuII-oxo, hydroxo clusters are stable with respect to reduction and conversion to metallic nanoparticles only up to ∼200 °C.

14.
Molecules ; 25(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899713

RESUMEN

Cyclodextrins (CDs) have drawn a lot of attention from the scientific communities as a model system for host-guest chemistry and also due to its variety of applications in the pharmaceutical, cosmetic, food, textile, separation science, and essential oil industries. The formation of the inclusion complexes enables these applications in the condensed phases, which have been confirmed by nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and other methodologies. The advent of soft ionization techniques that can transfer the solution-phase noncovalent complexes to the gas phase has allowed for extensive examination of these complexes and provides valuable insight into the principles governing the formation of gaseous noncovalent complexes. As for the CDs' host-guest chemistry in the gas phase, there has been a controversial issue as to whether noncovalent complexes are inclusion conformers reflecting the solution-phase structure of the complex or not. In this review, the basic principles governing CD's host-guest complex formation will be described. Applications and structures of CDs in the condensed phases will also be presented. More importantly, the experimental and theoretical evidence supporting the two opposing views for the CD-guest structures in the gas phase will be intensively reviewed. These include data obtained via mass spectrometry, ion mobility measurements, infrared multiphoton dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations.


Asunto(s)
Ciclodextrinas/química , Gases/química , Compuestos Orgánicos/química , Modelos Moleculares , Soluciones , Análisis Espectral
15.
Angew Chem Int Ed Engl ; 59(6): 2457-2464, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31769126

RESUMEN

Constructing architectures with hierarchical porosity has been widely considered as the most efficient way to bypass the problems related to slow mass transfer and inaccessibility of internal space in MOFs. Now, a crystal-growth-dominated strategy is proposed to fabricate hierarchically porous MOFs (HP-MOFs). When the crystal growth is dominated by the monomer attachment, the aggregation of nonionic surfactant or polymer can be easily captured and released during the crystal growth process, resulting in the formation and ordering hierarchical pores along the radial direction. Owing to the accelerated mass diffusion and more exposed active sites of this design, HP-MOFs exhibited an enhanced catalytic efficiency in styrene oxidation.

16.
Phys Chem Chem Phys ; 21(22): 11740-11747, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31114817

RESUMEN

To control the size and structure of supported Pt catalysts, the influence of additional metal particles and the effect of supports were elucidated during the cracking reaction of n-dodecane under supercritical reaction conditions. The dynamical changes in nanocatalysts and catalytic activity are studied under realistic reaction conditions by using a combination of simultaneous temperature-programmed heating, in situ Small Angle X-ray Scattering (SAXS) and X-ray Absorption Near Edge Structure (XANES). In situ SAXS results indicate that the stability of the catalysts increases with Sn concentration. In situ XANES analysis reveals that the degree of oxidation and the electronic states of catalysts are dependent on the amount of Sn. Carbonaceous deposits over spent catalysts were characterized by Raman spectroscopy, indicating that the highest Sn loading inhibits the formation of disordered graphitic lattices, which leads to an increased catalytic activity. SiO2, γ-Al2O3 and Mg(Al)Ox were employed as supports to investigate the support effect on the stability of Pt catalysts. In situ SAXS and XANES results clearly show the improved stability of catalysts on γ-Al2O3 and Mg(Al)Ox supports compared to Pt catalysts on SiO2 and the electronic states of catalysts are strongly influenced by support materials.

17.
Inorg Chem ; 57(12): 6903-6912, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29870242

RESUMEN

Understanding fundamental Tc chemistry is important to both the remediation of nuclear waste and the reprocessing of nuclear fuel; however, current knowledge of the electronic structure and spectral signatures of low-valent Tc compounds significantly lags behind the remainder of the d-block elements. In particular, identification and treatment of Tc speciation in legacy nuclear waste is challenging due to the lack of reference data especially for Tc compounds in the less common oxidation states (I-VI). In an effort to establish a spectroscopic library corresponding to the relevant conditions of extremely high ionic strength typical for the legacy nuclear waste, compounds with the general formula of [ fac-Tc(CO)3(OH2)3- n(OH) n]1- n (where n = 0-3) were examined by a range of spectroscopic techniques including 99Tc/13C NMR, IR, XPS, and XAS. In the series of monomeric aqua species, stepwise hydrolysis results in the increase of the Tc metal center electron density and corresponding progressive decrease of the Tc-C bond distances, Tc electron binding energies, and carbonyl stretching frequencies in the order [ fac-Tc(CO)3(OH2)3]+ > [ fac-Tc(CO)3(OH2)2(OH)] > [ fac-Tc(CO)3(OH2)(OH)2]-. These results correlate with established trends of the 99Tc upfield chemical shift and carbonyl 13C downfield chemical shift. The lone exception is [ fac-Tc(CO)3(OH)]4 which exhibits a comparatively low electron density at the metal center attributed to the µ3-bridging nature of the -OH ligands causing less σ-donation and no π-donation. This work also reports the first observations of these compounds by XPS and [ fac-Tc(CO)3Cl3]2- by XAS. The unique and distinguishable spectral features of the aqua [ fac-Tc(CO)3]+ complexes lay the foundation for their identification in the complex aqueous matrixes.

18.
Phys Chem Chem Phys ; 20(48): 30428-30436, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30499999

RESUMEN

Chiral differentiation of protonated isoleucine (Ile) using permethylated ß-cyclodextrin (perCD) in the gas-phase was studied using infrared multiple photon dissociation (IRMPD) spectroscopy, ion-mobility, and density functional theory (DFT) calculations. The gaseous protonated non-covalent complexes of perCD and d-Ile or l-Ile produced by electrospray ionization were interrogated by laser pulses in the wavenumber region of 2650 to 3800 cm-1. The IRMPD spectra showed remarkably different IR spectral features for the d-Ile or l-Ile and perCD non-covalent complexes. However, drift-tube ion-mobility experiments provided only a small difference in their collision cross-sections, and thus a limited separation of the d- and l-Ile complexes. DFT calculations revealed that the chiral distinction of the d- and l-complexes by IRMPD spectroscopy resulted from local interactions of the protonated Ile with perCD. Furthermore, the theoretical results showed that the IR absorption spectra of higher energy conformers (by ∼13.7 kcal mol-1) matched best with the experimentally observed IRMPD spectra. These conformers are speculated to be formed from kinetic-trapping of the solution-phase conformers. This study demonstrated that IRMPD spectroscopy provides an excellent platform for differentiating the subtle chiral difference of a small amino acid in a cyclodextrin-complexation environment; however, drift-tube ion-mobility did not have sufficient resolution to distinguish the chiral difference.

19.
Phys Chem Chem Phys ; 19(22): 14729-14737, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28540941

RESUMEN

The gaseous chiral differentiation of alanine by permethylated ß-cyclodextrin was studied using IRMPD spectroscopy and density functional theory calculations. The protonated non-covalent complexes of permethylated ß-cyclodextrin and d- or l-alanine were mass-selected and investigated by IR laser pulses in the wavelength region of 2650-3800 cm-1. The remarkably different features of the IRMPD spectra for d- and l-alanine are described, and their origin is elucidated by quantum chemical calculations. We show that the differentiation of the experimentally observed spectral features is the result of different local interactions of d- and l-alanine with permethylated ß-cyclodextrin. We also assign the extremely high-frequency (>3700 cm-1) bands in the observed spectra to the stretch motions of completely isolated alanine -OH groups.

20.
Nano Lett ; 16(1): 781-5, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26709945

RESUMEN

The oxygen evolution reaction (OER) plays a critical role in multiple energy conversion and storage applications. However, its sluggish kinetics usually results in large voltage polarization and unnecessary energy loss. Therefore, designing efficient catalysts that could facilitate this process has become an emerging topic. Here, we present a unique Pt-Cu core-shell nanostructure for catalyzing the nonaqueous OER. The catalysts were systematically investigated with comprehensive spectroscopic techniques, and applied in nonaqueous Li-O2 electrochemical cells, which exhibited dramatically reduced charging overpotential (<0.2 V). The superior performance is explained by the robust Cu(I) surface sites stabilized by the Pt core in the nanostructure. The insights into the catalytic mechanism of the unique Pt-Cu core-shell nanostructure gained in this work are expected to serve as a guide for future design of other nanostructured bimetallic OER catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA