Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anesthesiology ; 140(6): 1221-1231, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38603803

RESUMEN

The near-death experience has been reported since antiquity and is often characterized by the perception of light, interactions with other entities, and life recall. Near-death experiences can occur in a variety of situations, but they have been studied systematically after in-hospital cardiac arrest, with an incidence of 10 to 20%. Long attributed to metaphysical or supernatural causes, there have been recent advances in understanding the neurophysiologic basis of this unique category of conscious experience. This article reviews the epidemiology and neurobiology of near-death experiences, with a focus on clinical and laboratory evidence for a surge of neurophysiologic gamma oscillations and cortical connectivity after cardiac and respiratory arrest.


Asunto(s)
Encéfalo , Estado de Conciencia , Muerte , Humanos , Estado de Conciencia/fisiología , Encéfalo/fisiología , Encéfalo/fisiopatología , Paro Cardíaco/fisiopatología , Muerte Encefálica/fisiopatología , Muerte Encefálica/diagnóstico
2.
Anesthesiology ; 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38207285

RESUMEN

BACKGROUND: Although remimazolam is used as a general anesthetic in elderly patients due to its hemodynamic stability, the electroencephalogram (EEG) characteristics of remimazolam are not well-known. The purpose of this study was to identify the EEG features of remimazolam-induced unconsciousness in elderly patients and compare them with propofol. METHODS: Remimazolam (n=26) or propofol (n=26) were randomly administered for anesthesia induction in surgical patients. The hypnotic agent was blinded only to the patients. During the induction of anesthesia, remimazolam was administered at a rate of 6 mg/kg/h, and propofol was administered at a target effect-site concentration of 3.5 µg/ml. The EEG signals from 8 channels (Fp1,Fp2,Fz,F3,F4,Pz,P3,P4, referenced to A2, using the 10-20 system) were acquired during the induction of anesthesia and in the postoperative care unit. Power spectrum analysis was performed, and directed functional connectivity between frontal and parietal regions was evaluated using normalized symbolic transfer entropy. Functional connectivity in unconscious processes induced by remimazolam or propofol was compared with baseline. To compare each power of frequency over time of the two hypnotic agents, a permutation test with t statistic was conducted. RESULTS: Compared to the baseline in the alpha band, the feedback connectivity decreased by an average of 46% and 43%, respectively, after the loss of consciousness induced by remimazolam and propofol (95% CI for the mean difference:-0.073 to -0.044 for remimazolam, P<0.001,-0.068 to -0.042 for propofol,P<0.001). Asymmetry in the feedback and feedforward connectivity in the alpha band was suppressed after the loss of consciousness induced by remimazolam and propofol. There were no significant differences in the power of each frequency over time between the two hypnotic agents (minimum q-value=0.4235). CONCLUSIONS: Both regimens showed a greater decrease in feedback connectivity compared to a decrease in feedforward connectivity after loss of consciousness, leading to a disruption of asymmetry between the frontoparietal connectivity.

3.
Anesthesiology ; 135(5): 813-828, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34491305

RESUMEN

BACKGROUND: Neurophysiologic complexity in the cortex has been shown to reflect changes in the level of consciousness in adults but remains incompletely understood in the developing brain. This study aimed to address changes in cortical complexity related to age and anesthetic state transitions. This study tested the hypotheses that cortical complexity would (1) increase with developmental age and (2) decrease during general anesthesia. METHODS: This was a single-center, prospective, cross-sectional study of healthy (American Society of Anesthesiologists physical status I or II) children (n = 50) of age 8 to 16 undergoing surgery with general anesthesia at Michigan Medicine. This age range was chosen because it reflects a period of substantial brain network maturation. Whole scalp (16-channel), wireless electroencephalographic data were collected from the preoperative period through the recovery of consciousness. Cortical complexity was measured using the Lempel-Ziv algorithm and analyzed during the baseline, premedication, maintenance of general anesthesia, and clinical recovery periods. The effect of spectral power on Lempel-Ziv complexity was analyzed by comparing the original complexity value with those of surrogate time series generated through phase randomization that preserves power spectrum. RESULTS: Baseline spatiotemporal Lempel-Ziv complexity increased with age (yr; slope [95% CI], 0.010 [0.004, 0.016]; P < 0.001); when normalized to account for spectral power, there was no significant age effect on cortical complexity (0.001 [-0.004, 0.005]; P = 0.737). General anesthesia was associated with a significant decrease in spatiotemporal complexity (median [25th, 75th]; baseline, 0.660 [0.620, 0.690] vs. maintenance, 0.459 [0.402, 0.527]; P < 0.001), and spatiotemporal complexity exceeded baseline levels during postoperative recovery (0.704 [0.642, 0.745]; P = 0.009). When normalized, there was a similar reduction in complexity during general anesthesia (baseline, 0.913 [0.887, 0.923] vs. maintenance 0.851 [0.823, 0.877]; P < 0.001), but complexity remained significantly reduced during recovery (0.873 [0.840, 0.902], P < 0.001). CONCLUSIONS: Cortical complexity increased with developmental age and decreased during general anesthesia. This association remained significant when controlling for spectral changes during anesthetic-induced perturbations in consciousness but not with developmental age.


Asunto(s)
Anestesia General/métodos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Electroencefalografía/métodos , Adolescente , Factores de Edad , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Estudios Prospectivos
4.
Neuroimage ; 188: 228-238, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30529630

RESUMEN

Recent modeling and empirical studies support the hypothesis that large-scale brain networks function near a critical state. Similar functional connectivity patterns derived from resting state empirical data and brain network models at criticality provide further support. However, despite the strong implication of a relationship, there has been no principled explanation of how criticality shapes the characteristic functional connectivity in large-scale brain networks. Here, we hypothesized that the network science concept of partial phase locking is the underlying mechanism of optimal functional connectivity in the resting state. We further hypothesized that the characteristic connectivity of the critical state provides a theoretical boundary to quantify how far pharmacologically or pathologically perturbed brain connectivity deviates from its critical state, which could enable the differentiation of various states of consciousness with a theory-based metric. To test the hypothesis, we used a neuroanatomically informed brain network model with the resulting source signals projected to electroencephalogram (EEG)-like sensor signals with a forward model. Phase lag entropy (PLE), a measure of phase relation diversity, was estimated and the topography of PLE was analyzed. To measure the distance from criticality, the PLE topography at a critical state was compared with those of the EEG data from baseline consciousness, isoflurane anesthesia, ketamine anesthesia, vegetative state/unresponsive wakefulness syndrome, and minimally conscious state. We demonstrate that the partial phase locking at criticality shapes the functional connectivity and asymmetric anterior-posterior PLE topography, with low (high) PLE for high (low) degree nodes. The topographical similarity and the strength of PLE differentiates various pharmacologic and pathologic states of consciousness. Moreover, this model-based EEG network analysis provides a novel metric to quantify how far a pharmacologically or pathologically perturbed brain network is away from critical state, rather than merely determining whether it is in a critical or non-critical state.


Asunto(s)
Anestésicos Generales/farmacología , Ondas Encefálicas/fisiología , Encéfalo/fisiología , Conectoma , Estado de Conciencia/fisiología , Electroencefalografía/métodos , Modelos Neurológicos , Red Nerviosa/fisiología , Estado Vegetativo Persistente/fisiopatología , Adulto , Encéfalo/anatomía & histología , Encéfalo/efectos de los fármacos , Ondas Encefálicas/efectos de los fármacos , Humanos , Isoflurano/farmacología , Ketamina/farmacología , Red Nerviosa/anatomía & histología , Red Nerviosa/efectos de los fármacos , Adulto Joven
5.
PLoS Comput Biol ; 14(8): e1006424, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30161118

RESUMEN

Hysteresis, the discrepancy in forward and reverse pathways of state transitions, is observed during changing levels of consciousness. Identifying the underlying mechanism of hysteresis phenomena in the brain will enhance the ability to understand, monitor, and control state transitions related to consciousness. We hypothesized that hysteresis in brain networks shares the same underlying mechanism of hysteresis as other biological and non-biological networks. In particular, we hypothesized that the principle of explosive synchronization, which can mediate abrupt state transitions, would be critical to explaining hysteresis in the brain during conscious state transitions. We analyzed high-density electroencephalogram (EEG) that was acquired in healthy human volunteers during conscious state transitions induced by the general anesthetics sevoflurane or ketamine. We developed a novel method to monitor the temporal evolution of EEG networks in a parameter space, which consists of the strength and topography of EEG-based networks. Furthermore, we studied conditions of explosive synchronization in anatomically informed human brain network models. We identified hysteresis in the trajectory of functional brain networks during state transitions. The model study and empirical data analysis explained various hysteresis phenomena during the loss and recovery of consciousness in a principled way: (1) more potent anesthetics induce a larger hysteresis; (2) a larger range of EEG frequencies facilitates transitions into unconsciousness and impedes the return of consciousness; (3) hysteresis of connectivity is larger than that of EEG power; and (4) the structure and strength of functional brain networks reconfigure differently during the loss vs. recovery of consciousness. We conclude that the hysteresis phenomena observed during the loss and recovery of consciousness are generic network features. Furthermore, the state transitions are grounded in the same principle as state transitions in complex non-biological networks, especially during perturbation. These findings suggest the possibility of predicting and modulating hysteresis of conscious state transitions in large-scale brain networks.


Asunto(s)
Estado de Conciencia/fisiología , Red Nerviosa/fisiología , Inconsciencia/fisiopatología , Adulto , Anestésicos Generales , Encéfalo/fisiopatología , Conectoma/métodos , Sincronización Cortical/fisiología , Electroencefalografía/métodos , Sincronización de Fase en Electroencefalografía/fisiología , Femenino , Voluntarios Sanos , Humanos , Ketamina/farmacología , Masculino , Red Nerviosa/metabolismo , Sevoflurano/farmacología , Inconsciencia/inducido químicamente
6.
Chaos ; 29(1): 011106, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30709108

RESUMEN

We study the effects of coupling strength inhomogeneity and coupling functions on locking behaviors of coupled identical oscillators, some of which are relatively weakly coupled to others while some are relatively strongly coupled. Through the stability analysis and numerical simulations, we show that several categories of fully locked or partially locked states can emerge and obtain the conditions for these categories. In this system with coupling strength inhomogeneity, locked and drifting subpopulations are determined by the coupling strength distribution and the shape of the coupling functions. Even the strongly coupled oscillators can drift while weakly coupled oscillators can be locked. The simulation results with Gaussian and power-law distributions for coupling strengths are compared and discussed.

7.
Anesthesiology ; 129(5): 1029-1044, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29683806

RESUMEN

The heterogeneity of molecular mechanisms, target neural circuits, and neurophysiologic effects of general anesthetics makes it difficult to develop a reliable and drug-invariant index of general anesthesia. No single brain region or mechanism has been identified as the neural correlate of consciousness, suggesting that consciousness might emerge through complex interactions of spatially and temporally distributed brain functions. The goal of this review article is to introduce the basic concepts of networks and explain why the application of network science to general anesthesia could be a pathway to discover a fundamental mechanism of anesthetic-induced unconsciousness. This article reviews data suggesting that reduced network efficiency, constrained network repertoires, and changes in cortical dynamics create inhospitable conditions for information processing and transfer, which lead to unconsciousness. This review proposes that network science is not just a useful tool but a necessary theoretical framework and method to uncover common principles of anesthetic-induced unconsciousness.


Asunto(s)
Anestésicos Generales/farmacología , Encéfalo/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Humanos
8.
Entropy (Basel) ; 20(7)2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30792571

RESUMEN

Theoretical consideration predicts that the alteration of local and shared information in the brain is a key element in the mechanism of anesthetic-induced unconsciousness. Ordinal pattern analysis, such as permutation entropy (PE) and symbolic mutual information (SMI), have been successful in quantifying local and shared information in neurophysiological data; however, they have been rarely applied to altered states of consciousness, especially to data obtained with functional magnetic resonance imaging (fMRI). PE and SMI analysis, together with the superb spatial resolution of fMRI recording, enables us to explore the local information of specific brain areas, the shared information between the areas, and the relationship between the two. Given the spatially divergent action of anesthetics on regional brain activity, we hypothesized that anesthesia would differentially influence entropy (PE) and shared information (SMI) across various brain areas, which may represent fundamental, mechanistic indicators of loss of consciousness. FMRI data were collected from 15 healthy participants during four states: wakefulness (W), light (conscious) sedation (L), deep (unconscious) sedation (D), and recovery (R). Sedation was produced by the common, clinically used anesthetic, propofol. Firstly, we found that that global PE decreased from W to D, and increased from D to R. The PE was differentially affected across the brain areas; specifically, the PE in the subcortical network was reduced more than in the cortical networks. Secondly, SMI was also differentially affected in different areas, as revealed by the reconfiguration of its spatial pattern (topographic structure). The topographic structures of SMI in the conscious states W, L, and R were distinctively different from that of the unconscious state D. Thirdly, PE and SMI were positively correlated in W, L, and R, whereas this correlation was disrupted in D. And lastly, PE changes occurred preferentially in highly connected hub regions. These findings advance our understanding of brain dynamics and information exchange, emphasizing the importance of topographic structure and the relationship of local and shared information in anesthetic-induced unconsciousness.

9.
Anesthesiology ; 136(3): 405-407, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35120194
10.
Anesthesiology ; 127(1): 58-69, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28486269

RESUMEN

BACKGROUND: Previous studies have demonstrated inconsistent neurophysiologic effects of ketamine, although discrepant findings might relate to differences in doses studied, brain regions analyzed, coadministration of other anesthetic medications, and resolution of the electroencephalograph. The objective of this study was to characterize the dose-dependent effects of ketamine on cortical oscillations and functional connectivity. METHODS: Ten healthy human volunteers were recruited for study participation. The data were recorded using a 128-channel electroencephalograph during baseline consciousness, subanesthetic dosing (0.5 mg/kg over 40 min), anesthetic dosing (1.5 mg/kg bolus), and recovery. No other sedative or anesthetic medications were administered. Spectrograms, topomaps, and functional connectivity (weighted and directed phase lag index) were computed and analyzed. RESULTS: Frontal theta bandwidth power increased most dramatically during ketamine anesthesia (mean power ± SD, 4.25 ± 1.90 dB) compared to the baseline (0.64 ± 0.28 dB), subanesthetic (0.60 ± 0.30 dB), and recovery (0.68 ± 0.41 dB) states; P < 0.001. Gamma power also increased during ketamine anesthesia. Weighted phase lag index demonstrated theta phase locking within anterior regions (0.2349 ± 0.1170, P < 0.001) and between anterior and posterior regions (0.2159 ± 0.1538, P < 0.01) during ketamine anesthesia. Alpha power gradually decreased with subanesthetic ketamine, and anterior-to-posterior directed connectivity was maximally reduced (0.0282 ± 0.0772) during ketamine anesthesia compared to all other states (P < 0.05). CONCLUSIONS: Ketamine anesthesia correlates most clearly with distinct changes in the theta bandwidth, including increased power and functional connectivity. Anterior-to-posterior connectivity in the alpha bandwidth becomes maximally depressed with anesthetic ketamine administration, suggesting a dose-dependent effect.


Asunto(s)
Analgésicos/farmacología , Encéfalo/efectos de los fármacos , Electroencefalografía/efectos de los fármacos , Ketamina/farmacología , Fenómenos Fisiológicos del Sistema Nervioso/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Valores de Referencia
11.
PLoS Comput Biol ; 11(4): e1004225, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25874700

RESUMEN

The balance of global integration and functional specialization is a critical feature of efficient brain networks, but the relationship of global topology, local node dynamics and information flow across networks has yet to be identified. One critical step in elucidating this relationship is the identification of governing principles underlying the directionality of interactions between nodes. Here, we demonstrate such principles through analytical solutions based on the phase lead/lag relationships of general oscillator models in networks. We confirm analytical results with computational simulations using general model networks and anatomical brain networks, as well as high-density electroencephalography collected from humans in the conscious and anesthetized states. Analytical, computational, and empirical results demonstrate that network nodes with more connections (i.e., higher degrees) have larger amplitudes and are directional targets (phase lag) rather than sources (phase lead). The relationship of node degree and directionality therefore appears to be a fundamental property of networks, with direct applicability to brain function. These results provide a foundation for a principled understanding of information transfer across networks and also demonstrate that changes in directionality patterns across states of human consciousness are driven by alterations of brain network topology.


Asunto(s)
Encéfalo/fisiología , Biología Computacional/métodos , Conectoma , Modelos Neurológicos , Red Nerviosa/fisiología , Adulto , Simulación por Computador , Femenino , Humanos , Masculino , Adulto Joven
12.
Proc Natl Acad Sci U S A ; 110(35): 14432-7, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940340

RESUMEN

The brain is assumed to be hypoactive during cardiac arrest. However, the neurophysiological state of the brain immediately following cardiac arrest has not been systematically investigated. In this study, we performed continuous electroencephalography in rats undergoing experimental cardiac arrest and analyzed changes in power density, coherence, directed connectivity, and cross-frequency coupling. We identified a transient surge of synchronous gamma oscillations that occurred within the first 30 s after cardiac arrest and preceded isoelectric electroencephalogram. Gamma oscillations during cardiac arrest were global and highly coherent; moreover, this frequency band exhibited a striking increase in anterior-posterior-directed connectivity and tight phase-coupling to both theta and alpha waves. High-frequency neurophysiological activity in the near-death state exceeded levels found during the conscious waking state. These data demonstrate that the mammalian brain can, albeit paradoxically, generate neural correlates of heightened conscious processing at near-death.


Asunto(s)
Muerte Encefálica , Encéfalo/fisiología , Animales , Electroencefalografía , Femenino , Paro Cardíaco/fisiopatología , Masculino , Ratas , Ratas Wistar
13.
Philos Trans A Math Phys Eng Sci ; 373(2034)2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548273

RESUMEN

'Covert consciousness' is a state in which consciousness is present without the capacity for behavioural response, and it can occur in patients with intraoperative awareness or unresponsive wakefulness syndrome. To detect and prevent this undesirable state, it is critical to develop a reliable neurobiological assessment of an individual's level of consciousness that is independent of behaviour. One such approach that shows potential is measuring surrogates of cortical communication in the brain using electroencephalography (EEG). EEG is practicable in clinical application, but involves many fundamental signal processing problems, including signal-to-noise ratio and high dimensional complexity. Symbolic analysis of EEG can mitigate these problems, improving the measurement of brain connectivity and the ability to successfully assess levels of consciousness. In this article, we review the problem of covert consciousness, basic neurobiological principles of consciousness, current methods of measuring brain connectivity and the advantages of symbolic processing, with a focus on symbolic transfer entropy (STE). Finally, we discuss recent advances and clinical applications of STE and other symbolic analyses to assess levels of consciousness.

14.
bioRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405722

RESUMEN

Psilocybin produces an altered state of consciousness in humans and is associated with complex spatiotemporal changes in brain networks. Given the emphasis on rodent models for mechanistic studies, there is a need for characterization of the effect of psilocybin on brain-wide network dynamics. Previous rodent studies of psychedelics, using electroencephalogram, have primarily been done with sparse electrode arrays that offered limited spatial resolution precluding network level analysis, and have been restricted to lower gamma frequencies. Therefore, in the study, we used electroencephalographic recordings from 27 sites (electrodes) across rat cortex (n=6 male, 6 female) to characterize the effect of psilocybin (0.1 mg/kg, 1 mg/kg, and 10 mg/kg delivered over an hour) on network organization as inferred through changes in node degree (index of network density) and connection strength (weighted phase-lag index). The removal of aperiodic component from the electroencephalogram localized the primary oscillatory changes to theta (4-10 Hz), medium gamma (70-110 Hz), and high gamma (110-150 Hz) bands, which were used for the network analysis. Additionally, we determined the concurrent changes in theta-gamma phase-amplitude coupling. We report that psilocybin, in a dose-dependent manner, 1) disrupted theta-gamma coupling [p<0.05], 2) increased frontal high gamma connectivity [p<0.05] and posterior theta connectivity [p≤0.049], and 3) increased frontal high gamma [p<0.05] and posterior theta [p≤0.046] network density. The medium gamma frontoparietal connectivity showed a nonlinear relationship with psilocybin dose. Our results suggest that high-frequency network organization, decoupled from local theta-phase, may be an important signature of psilocybin-induced non-ordinary state of consciousness.

15.
Sci Rep ; 14(1): 7315, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538687

RESUMEN

Sickle cell disease (SCD) is a genetic disorder causing painful and unpredictable Vaso-occlusive crises (VOCs) through blood vessel blockages. In this study, we propose explosive synchronization (ES) as a novel approach to comprehend the hypersensitivity and occurrence of VOCs in the SCD brain network. We hypothesized that the accumulated disruptions in the brain network induced by SCD might lead to strengthened ES and hypersensitivity. We explored ES's relationship with patient reported outcome measures (PROMs) as well as VOCs by analyzing EEG data from 25 SCD patients and 18 matched controls. SCD patients exhibited lower alpha frequency than controls. SCD patients showed correlation between frequency disassortativity (FDA), an ES condition, and three important PROMs. Furthermore, stronger FDA was observed in SCD patients with a higher frequency of VOCs and EEG recording near VOC. We also conducted computational modeling on SCD brain network to study FDA's role in network sensitivity. Our model demonstrated that a stronger FDA could be linked to increased sensitivity and frequency of VOCs. This study establishes connections between SCD pain and the universal network mechanism, ES, offering a strong theoretical foundation. This understanding will aid predicting VOCs and refining pain management for SCD patients.


Asunto(s)
Anemia de Células Falciformes , Dolor , Humanos , Dolor/etiología , Anemia de Células Falciformes/complicaciones , Manejo del Dolor/efectos adversos , Encéfalo
16.
Anesthesiology ; 119(6): 1347-59, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24013572

RESUMEN

INTRODUCTION: General anesthesia induces unconsciousness along with functional changes in brain networks. Considering the essential role of hub structures for efficient information transmission, the authors hypothesized that anesthetics have an effect on the hub structure of functional brain networks. METHODS: Graph theoretical network analysis was carried out to study the network properties of 21-channel electroencephalogram data from 10 human volunteers anesthetized on two occasions. The functional brain network was defined by Phase Lag Index, a coherence measure, for three states: wakefulness, loss of consciousness induced by the anesthetic propofol, and recovery of consciousness. The hub nodes were determined by the largest centralities. The correlation between the altered hub organization and the phase relationship between electroencephalographic channels was investigated. RESULTS: Topology rather than connection strength of functional networks correlated with states of consciousness. The average path length, clustering coefficient, and modularity significantly increased after administration of propofol, which disrupted long-range connections. In particular, the strength of hub nodes significantly decreased. The primary hub location shifted from the parietal to frontal region, in association with propofol-induced unconsciousness. The phase lead of frontal to parietal regions in the α frequency band (8-13 Hz) observed during wakefulness reversed direction after propofol and returned during recovery. CONCLUSIONS: Propofol reconfigures network hub structure in the brain and reverses the phase relationship between frontal and parietal regions. Changes in network topology are more closely associated with states of consciousness than connectivity and may be the primary mechanism for the observed loss of frontal to parietal feedback during general anesthesia.


Asunto(s)
Anestesia Intravenosa , Anestésicos Intravenosos/farmacología , Red Nerviosa/efectos de los fármacos , Propofol/farmacología , Inconsciencia/inducido químicamente , Adulto , Algoritmos , Electroencefalografía/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/fisiología , Humanos , Masculino , Lóbulo Parietal/efectos de los fármacos , Lóbulo Parietal/fisiología , Transmisión Sináptica/efectos de los fármacos , Inconsciencia/fisiopatología , Vigilia/efectos de los fármacos , Adulto Joven
17.
Anesthesiology ; 118(6): 1264-75, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23695090

RESUMEN

INTRODUCTION: Directional connectivity from anterior to posterior brain regions (or "feedback" connectivity) has been shown to be inhibited by propofol and sevoflurane. In this study the authors tested the hypothesis that ketamine would also inhibit cortical feedback connectivity in frontoparietal networks. METHODS: Surgical patients (n = 30) were recruited for induction of anesthesia with intravenous ketamine (2 mg/kg); electroencephalography of the frontal and parietal regions was acquired. The authors used normalized symbolic transfer entropy, a computational method based on information theory, to measure directional connectivity across frontal and parietal regions. Statistical analysis of transfer entropy measures was performed with the permutation test and the time-shift test to exclude false-positive connectivity. For comparison, the authors used normalized symbolic transfer entropy to reanalyze electroencephalographic data gathered from surgical patients receiving either propofol (n = 9) or sevoflurane (n = 9) for anesthetic induction. RESULTS: Ketamine reduced alpha power and increased gamma power, in contrast to both propofol and sevoflurane. During administration of ketamine, feedback connectivity gradually diminished and was significantly inhibited after loss of consciousness (mean ± SD of baseline and anesthesia: 0.0074 ± 0.003 and 0.0055 ± 0.0027; F(5, 179) = 7.785, P < 0.0001). By contrast, feedforward connectivity was preserved during exposure to ketamine (mean ± SD of baseline and anesthesia: 0.0041 ± 0.0015 and 0.0046 ± 0.0018; F(5, 179) = 2.07; P = 0.072). Like ketamine, propofol and sevoflurane selectively inhibited feedback connectivity after anesthetic induction. CONCLUSIONS: Diverse anesthetics disrupt frontal-parietal communication, despite molecular and neurophysiologic differences. Analysis of directional connectivity in frontal-parietal networks could provide a common metric of general anesthesia and insight into the cognitive neuroscience of anesthetic-induced unconsciousness.


Asunto(s)
Lóbulo Frontal/efectos de los fármacos , Ketamina/farmacología , Éteres Metílicos/farmacología , Lóbulo Parietal/efectos de los fármacos , Propofol/farmacología , Adulto , Analgésicos/farmacología , Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos/farmacología , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sevoflurano , Adulto Joven
18.
Front Syst Neurosci ; 17: 1085902, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304151

RESUMEN

The healthy conscious brain is thought to operate near a critical state, reflecting optimal information processing and high susceptibility to external stimuli. Conversely, deviations from the critical state are hypothesized to give rise to altered states of consciousness (ASC). Measures of criticality could therefore be an effective way of establishing the conscious state of an individual. Furthermore, characterizing the direction of a deviation from criticality may enable the development of treatment strategies for pathological ASC. The aim of this scoping review is to assess the current evidence supporting the criticality hypothesis, and the use of criticality as a conceptual framework for ASC. Using the PRISMA guidelines, Web of Science and PubMed were searched from inception to February 7th 2022 to find articles relating to measures of criticality across ASC. N = 427 independent papers were initially found on the subject. N = 378 were excluded because they were either: not related to criticality; not related to consciousness; not presenting results from a primary study; presenting model data. N = 49 independent papers were included in the present research, separated in 7 sub-categories of ASC: disorders of consciousness (DOC) (n = 5); sleep (n = 13); anesthesia (n = 18); epilepsy (n = 12); psychedelics and shamanic state of consciousness (n = 4); delirium (n = 1); meditative state (n = 2). Each category included articles suggesting a deviation of the critical state. While most studies were only able to identify a deviation from criticality without being certain of its direction, the preliminary consensus arising from the literature is that non-rapid eye movement (NREM) sleep reflects a subcritical state, epileptic seizures reflect a supercritical state, and psychedelics are closer to the critical state than normal consciousness. This scoping review suggests that, though the literature is limited and methodologically inhomogeneous, ASC are characterized by a deviation from criticality, though its direction is not clearly reported in a majority of studies. Criticality could become, with more extensive research, an effective and objective way to characterize ASC, and help identify therapeutic avenues to improve criticality in pathological brain states. Furthermore, we suggest how anesthesia and psychedelics could potentially be used as neuromodulation techniques to restore criticality in DOC.

19.
medRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873459

RESUMEN

Sickle cell disease (SCD) is a genetic disorder causing blood vessel blockages and painful Vaso-occlusive crises (VOCs). VOCs, characterized by severe pain due to blocked blood flow, are recurrent and unpredictable, posing challenges for preventive strategies. In this study we propose explosive synchronization (ES), a phenomenon characterized by abrupt brain network phase transitions, as a novel approach to address this challenge. We hypothesized that the accumulated disruptions in the brain network induced by SCD might lead to strengthened ES and hypersensitivity. We explored ES's relationship with patient reported outcome measures (PROMs) and VOCs by analyzing EEG data from 25 SCD patients and 18 matched controls. SCD patients exhibited significantly lower alpha wave frequency than controls. SCD patients under painful pressure stimulation showed correlation between frequency disassortativity (FDA), an ES condition, and three important PROMs. Furthermore, patients who had a higher frequency of VOCs in the preceding 12 months presented with stronger FDA. The timing of VOC occurrence relative to EEG recordings was significantly associated to FDA. We also conducted computational modeling on SCD brain network to study FDA's role in network sensitivity. Stronger FDA correlated with higher responsivity and complexity in our model. Simulation under noisy environment showed that higher FDA could be linked to increased occurrence frequency of crisis. This study establishes connections between SCD pain and the universal network mechanism, ES, offering a strong theoretical foundation. This understanding will aid predicting VOCs and refining pain management for SCD patients.

20.
BMJ Open ; 13(5): e073945, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188468

RESUMEN

INTRODUCTION: Delirium is a major public health issue for surgical patients and their families because it is associated with increased mortality, cognitive and functional decline, prolonged hospital admission and increased healthcare expenditures. Based on preliminary data, this trial tests the hypothesis that intravenous caffeine, given postoperatively, will reduce the incidence of delirium in older adults after major non-cardiac surgery. METHODS AND ANALYSIS: The CAffeine, Postoperative Delirium And CHange In Outcomes after Surgery-2 (CAPACHINOS-2) Trial is a single-centre, placebo-controlled, randomised clinical trial that will be conducted at Michigan Medicine. The trial will be quadruple-blinded, with clinicians, researchers, participants and analysts all masked to the intervention. The goal is to enrol 250 patients with a 1:1:1: allocation ratio: dextrose 5% in water placebo, caffeine 1.5 mg/kg and caffeine 3 mg/kg as a caffeine citrate infusion. The study drug will be administered intravenously during surgical closure and on the first two postoperative mornings. The primary outcome will be delirium, assessed via long-form Confusion Assessment Method. Secondary outcomes will include delirium severity, delirium duration, patient-reported outcomes and opioid consumption patterns. A substudy analysis will also be conducted with high-density electroencephalography (72-channel system) to identify neural abnormalities associated with delirium and Mild Cognitive Impairment at preoperative baseline. ETHICS AND DISSEMINATION: This study was approved by the University of Michigan Medical School Institutional Review Board (HUM00218290). An independent data and safety monitoring board has also been empanelled and has approved the clinical trial protocol and related documents. Trial methodology and results will be disseminated via clinical and scientific journals along with social and news media. TRIAL REGISTRATION NUMBER: NCT05574400.


Asunto(s)
Disfunción Cognitiva , Delirio , Delirio del Despertar , Humanos , Anciano , Delirio/etiología , Delirio/prevención & control , Delirio/epidemiología , Cafeína/uso terapéutico , Disfunción Cognitiva/complicaciones , Michigan/epidemiología , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA