RESUMEN
Arsenosugars are water-soluble arsenic species predominant in marine algae and other seafood including mussels and oysters. They typically occur at levels ranging from 2 to 50mg arsenic/kg dry weight. Most of the arsenosugars contain arsenic as a dimethylarsinoyl group (Me2As(O)-), commonly referred to as the oxo forms, but thio analogues have also been identified in marine organisms and as metabolic products of oxo-arsenosugars. So far, no data regarding toxicity and toxicokinetics of thio-arsenosugars are available. This in vitro-based study indicates that thio-dimethylarsenosugar-glycerol exerts neither pronounced cytotoxicity nor genotoxicity even though this arsenical was bioavailable to human hepatic (HepG2) and urothelial (UROtsa) cells. Experiments with the Caco-2 intestinal barrier model mimicking human absorption indicate for the thio-arsenosugar-glycerol higher intestinal bioavailability as compared to the oxo-arsenosugars. Nevertheless, absorption estimates were much lower in comparison to other arsenicals including arsenite and arsenic-containing hydrocarbons. Arsenic speciation in cell lysates revealed that HepG2 cells are able to metabolise the thio-arsenosugar-glycerol to some extent to dimethylarsinic acid (DMA). These first in vitro data cannot fully exclude risks to human health related to the presence of thio-arsenosugars in food.
Asunto(s)
Arseniatos/química , Arseniatos/toxicidad , Glicerol/química , Glicerol/toxicidad , Monosacáridos/química , Monosacáridos/toxicidad , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/toxicidad , Arseniatos/farmacocinética , Disponibilidad Biológica , Células CACO-2 , Recuento de Células , Línea Celular Tumoral , Tamaño de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glicerol/farmacocinética , Células Hep G2 , Humanos , Monosacáridos/farmacocinética , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/farmacocinéticaRESUMEN
Thio-dimethylarsinic acid (thio-DMA(V)) has recently been identified as human metabolite after exposure toward both the human carcinogen inorganic arsenic and arsenosugars, which are the major arsenical constituents of marine algae. This study aims to get further insight in the toxic modes of action of thio-DMA(V) in cultured human urothelial cells. Among others effects of thio-DMA(V) on eight cell death related endpoints, cell cycle distribution, genotoxicity, cellular bioavailability as well as for the first time its impact on DNA damage induced poly(ADP-ribosyl)ation were investigated and compared to effects induced by arsenite. The data indicate that thio-DMA(V) exerts its cellular toxicity in a similar or even lower concentration range, however most likely via different mechanisms, than arsenite. Most interestingly, thio-DMA(V) decreased damage-induced cellular poly(ADP-ribosyl)ation by 35,000-fold lower concentrations than arsenite. The inhibition of this essential DNA-damage induced and DNA-repair related signaling reaction might contribute to inorganic arsenic induced toxicity, at least in the bladder. Therefore, and also because thio-DMA(V) is to date by far the most toxic human metabolite identified after arsenosugar intake, thio-DMA(V) should contemporary be fully (also in vivo) toxicologically characterized, to assess risks to human health related to inorganic arsenic but especially arsenosugar dietary intake.
Asunto(s)
Arseniatos/metabolismo , Arseniatos/toxicidad , Arsénico/toxicidad , Ácido Cacodílico/análogos & derivados , Monosacáridos/metabolismo , Monosacáridos/toxicidad , Compuestos de Sulfhidrilo/toxicidad , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología , Adenosina Difosfato Ribosa/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Arsenicales , Disponibilidad Biológica , Ácido Cacodílico/toxicidad , Caspasa 2/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Regulación de la Expresión Génica , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , NAD/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Recombinantes/metabolismoRESUMEN
The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co-genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl)ation contributes to organic Hg induced neurotoxicity.
Asunto(s)
Astrocitos/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Mutágenos/toxicidad , Timerosal/toxicidad , Astrocitos/metabolismo , Línea Celular , Roturas del ADN/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli Adenosina Difosfato Ribosa/análisis , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismoRESUMEN
SCOPE: In their recently published Scientific Opinion on Arsenic in Food, the European Food Safety Authority concluded that a risk assessment for arsenosugars is currently not possible, largely because of the lack of relevant toxicological data. To address this issue, we carried out a toxicological in vitro characterization of two arsenosugars and six arsenosugar metabolites. METHODS AND RESULTS: The highly pure synthesized arsenosugars, DMA(V) -sugar-glycerol and DMA(V) -sugar-sulfate, investigated in this study, as well as four metabolites, oxo-dimethylarsenoacetic acid (oxo-DMAA(V) ), oxo-dimethylarsenoethanol (oxo-DMAE(V) ), thio-DMAA(V) and thio-DMAE(V) , exerted neither cytotoxicity nor genotoxicity up to 500 µM exposure in cultured human bladder cells. However, two arsenosugar metabolites, namely dimethyl-arsinic acid (DMA(V) ) and thio-dimethylarsinic acid (thio-DMA(V) ), were toxic to the cells; thio-DMA(V) was even slightly more cytotoxic than arsenite. Additionally, intestinal bioavailability of the arsenosugars was assessed applying the Caco-2 intestinal barrier model. The observed low, but significant transfer rates of the arsenosugars across the barrier model provide further evidence that arsenosugars are intestinally bioavailable. CONCLUSION: In a cellular system that metabolizes arsenosugars, cellular toxicity likely arises. Thus, in strong contrast to arsenobetaine, arsenosugars cannot be categorized as nontoxic for humans and a risk to human health cannot be excluded.
Asunto(s)
Arseniatos/toxicidad , Arsenitos/toxicidad , Contaminación de Alimentos/análisis , Monosacáridos/toxicidad , Arseniatos/farmacocinética , Arsenitos/farmacocinética , Disponibilidad Biológica , Células CACO-2 , Ácido Cacodílico/análogos & derivados , Ácido Cacodílico/farmacocinética , Ácido Cacodílico/toxicidad , Cromatografía Líquida de Alta Presión , Daño del ADN/efectos de los fármacos , Humanos , Monosacáridos/farmacocinética , Medición de Riesgo , Pruebas de ToxicidadRESUMEN
Inorganic arsenic is a well-documented, exposure relevant human carcinogen. A promising starting point to further understand the mechanisms behind inorganic arsenic carcinogenicity might be a formation of reactive, highly toxic metabolites during human arsenic metabolism. This study characterises the toxicity of recently identified S-containing arsenic metabolites in cultured human A549 lung adenocarcinoma epithelium cells. In direct comparison to arsenite, thio-dimethylarsinic acid (thio-DMA(V)) and dimethylarsinic glutathione (DMAG) exerted a 5- to 20-fold stronger cytotoxicity and showed a 2- to 20-fold higher cellular bioavailability, respectively. All three arsenicals disturbed cell cycle progression at cytotoxic concentrations, but failed to increase the level of reactive oxygen and nitrogen species (RONS) in healthy A549 cells. However, a strong disturbance of the oxidative defense system was observed after incubation with absolutely sub-cytotoxic, pico- to nanomolar concentrations of arsenite and thio-DMA(V), respectively. Thus, both GSH and GSSG levels were significantly decreased by up to 40%. Accordingly, RONS levels of oxidatively (H2O2) stressed cells were strongly increased by the arsenicals. Since in vivo RONS are permanently endogenously and exogenously produced, this boost of the existing oxidative stress by arsenite and thio-DMA(V) might contribute to the process of inorganic arsenic induced carcinogenicity.
Asunto(s)
Ácido Cacodílico/análogos & derivados , Ácido Cacodílico/toxicidad , Carcinógenos/toxicidad , Glutatión/análogos & derivados , Glutatión/toxicidad , Arsenitos/farmacología , Disponibilidad Biológica , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/farmacologíaRESUMEN
Whereas inorganic arsenic is classified as a human carcinogen, risks to human health related to the presence of arsenosugars in marine food are still unclear. Since studies indicate that human inorganic arsenic metabolites contribute to inorganic arsenic induced carcinogenicity, a risk assessment for arsenosugars should also include a toxicological characterization of their respective metabolites. Here we assessed intestinal bioavailability of the human arsenosugar metabolites oxo-DMAA(V), thio-DMAA(V), oxo-DMAE(V), thio-DMAE(V) and thio-DMA(V) in relation to arsenite in the Caco-2 intestinal barrier model. Whereas arsenite and thio-DMA(V) caused barrier disruption at concentrations ≥10 µM, all other metabolites did not cause a barrier leakage, even when applied at 50 times higher concentrations than arsenite and thio-DMA(V). The transfer studies point to a strong intestinal bioavailability of thio-DMA(V) and thio-DMAE(V), whereas oxo-DMAA(V), thio-DMAA(V) and oxo-DMAE(V) passed the in vitro intestinal barrier only to a very small extent. Detailed influx and efflux studies indicate that arsenite and thio-DMA(V) cross the intestinal barrier most likely by passive diffusion (paracellular) and facilitated (transcellular) transport. LC-ICP-QMS based arsenic speciation studies during the transfer experiments demonstrate transfer of thio-DMA(V) itself across the intestinal barrier and suggest metabolism of thio-DMA(V) using the in vitro intestinal barrier model to its oxygen-analogue DMA(V). In the case of arsenite no metabolism was observed. In summary the two arsenosugar metabolites thio-DMA(V) and thio-DMAE(V) showed intestinal bioavailability similar to that of arsenite, and about 10-fold higher than that reported for arsenosugars (Leffers et al., Mol. Nutr. Food Res., 2013, DOI: 10.1002/mnfr.201200821) in the same in vitro model. Thus, a presystemic metabolism of arsenosugars might strongly impact arsenic intestinal bioavailability after arsenosugar intake and should therefore be considered when assessing the risks to human health related to the consumption of arsenosugar-containing food.
Asunto(s)
Arseniatos/química , Arseniatos/farmacocinética , Ácido Cacodílico/análogos & derivados , Monosacáridos/química , Monosacáridos/farmacocinética , Arsenitos/química , Disponibilidad Biológica , Células CACO-2 , Ácido Cacodílico/química , Carcinógenos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Difusión , Relación Dosis-Respuesta a Droga , Humanos , Intestinos/efectos de los fármacos , Oxígeno/química , PermeabilidadRESUMEN
We synthesised and toxicologically characterised the arsenic metabolite thiodimethylarsinic acid (thio-DMA(V)). Successful synthesis of highly pure thio-DMA(V) was confirmed by state-of-the-art analytical techniques including (1)H-NMR, HPLC-FTMS, and HPLC-ICPMS. Toxicological characterization was carried out in comparison to arsenite and its well-known trivalent and pentavalent methylated metabolites. It comprised cellular bioavailability as well as different cytotoxicity and genotoxicity end points in cultured human A549 lung cells. Of all arsenicals investigated, thio-DMA(V) exerted the strongest cytotoxicity. Moreover, thio-DMA(V) did not induce DNA strand breaks and an increased induction of both micronuclei and multinucleated cells occurred only at beginning cytotoxic concentrations, indicating that thio-DMA(V) does not act via a genotoxic mode of action. Finally, to assess potential implications of thio-DMA(V) for human health, further mechanistic studies are urgently necessary to identify the toxic mode of action of this highly toxic, unusual pentavalent organic arsenical.