RESUMEN
The growth of MoS2 films by sulfurization of Mo foils at atmospheric pressure is reported. The growth procedure provides, in a controlled way, mono- and few-layer thick MoS2 films with substrate-scale uniformity across square-centimeter area on commercial foils without any pre- or post-treatment. The prepared few-layer MoS2 films are investigated as counter electrodes for dye-sensitized solar cells (DSSCs) by assessing their ability to catalyse the reduction of I3(-) to I(-) in triiodide redox shuttles. The dependence of the MoS2 catalytic activity on the number of monolayers is explored down to the bilayer thickness, showing performance similar to that of, and stability against corrosion better than, Pt-based nanostructured film. The DSSC with the MoS2-Mo counter electrode yields a photovoltaic energy conversion efficiency of 8.4%, very close to that of the Pt-FTO-based DSSC, i.e. 8.7%. The current results disclose a facile, cost-effective and green method for the fabrication of mechanically robust and chemically stable, few-layer MoS2 on flexible Mo substrates and further demonstrate that efficient counter electrodes for DSSCs can be prepared at thicknesses down to the 1-2 nm scale.
RESUMEN
Hybrid materials based on perfluorophenyl functionalized quinolines directly attached onto the sp(2) hybridized surface of carbon nanostructures have been prepared and studied herein along with their precursor semiconducting small molecules. Tails of different polarities have been used so that the molecules would present improved solubility and controllable affinity for the selected substrates. These materials were evaluated for their electronic and electrochemical properties for potential application in organic photovoltaic solar cells (OPVs), using UPS, XPS and CV measurements after deposition onto oxygen plasma cleaned Si wafers or solvent treated ITO coated glass. A weak interaction between the fluorine atoms and both the Si and the ITO substrates was observed by XPS. The extent of this interfacial interaction was found to be related to the orientation of the quinoline moieties on the organic layer. Moreover, the combination of XPS and UPS analyses showed that the absolute energy value of the HOMO level increased as the amount of surface fluorine atoms increased. CV measurements revealed that hybridisation of the small molecules with carbon nanostructures decreases the materials' energy gap and increases the absolute energy value of the LUMO level. These features prove the efficiency of the proposed method to produce materials with controlled energy levels for solar cell devices.
RESUMEN
In the present work, we propose a new architecture for partly covered photoelectrochromic devices with a modified anode layout, so that the TiO2 film is deposited first on the substrate, covering a small part of its surface, followed by the WO3 film that covers the remaining device area. As a result, the TiO2 film can be subjected to the proper thermal and chemical treatment without affecting the electrochromic performance of the WO3 film. The proposed design led to photoelectrochromic (PEC) devices with a power conversion efficiency (PCE) four times higher than that of typical partly covered devices, with a measured maximum of 4.9%. This, in turn, enabled a reduction in the total area covered by the photovoltaic unit of the devices by four times (to 5% from 20%), thus reducing its visual obstruction, without affecting the depth, uniformity and speed of coloration. A detailed study of the parameters affecting the performance of the new devices revealed that, with the cover ratio decreasing, PCE was increasing. The photocoloration efficiency also exhibited the same trend for cover ratio values below 15%. Storage of the devices in short circuit conditions was found to accelerate optical reversibility without affecting their photovoltaic and optical performance.
RESUMEN
A comparative assessment of nanowire versus nanoparticle-based ZnO dye-sensitized solar cells (DSSCs) is conducted to investigate the main parameters that affect device performance. Towards this aim, the influence of film morphology, dye adsorption, electron recombination and sensitizer pH on the power conversion efficiency (PCE) of the DSSCs is examined. Nanoparticle-based DSSCs with PCEs of up to 6.2% are developed and their main characteristics are examined. The efficiency of corresponding devices based on nanowire arrays (NW) is considerably lower (0.63%) by comparison, mainly due to low light harvesting ability of ZnO nanowire films. The dye loading of nanowire films is found to be approximately an order of magnitude lower than that of nanoparticle-based ones, regardless of their internal surface area. Inefficient anchoring of dye molecules on the semiconductor surface due to repelling electrostatic forces is identified as the main reason for this low dye loading. We propose a method of modifying the sensitizer solution by altering its pH, thereby enhancing dye adsorption. We report an increase in the PCE of nanowire DSSCs from 0.63% to 1.84% as a direct result of using such a modified dye solution.