RESUMEN
Dibohemamines A-C (5-7), three new dimeric bohemamine analogues dimerized through a methylene group, were isolated from a marine-derived Streptomyces spinoverrucosus. The structures determined by spectroscopic analysis were confirmed through the semi-synthetic derivatization of monomeric bohemamines and formaldehyde. These reactions, which could occur under mild conditions, together with the detection of formaldehyde in the culture, revealed that this dimerization is a non-enzymatic process. In addition to the unique dimerization of the dibohemamines, dibohemamines B and C were found to have nm cytotoxicity against the non-small cell-lung cancer cell line A549. In view of the potent cytotoxicity of compounds 6 and 7, a small library of bohemamine analogues was generated for biological evaluation by utilizing a series of aryl and alkyl aldehydes.
RESUMEN
Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase involved in a variety of cellular response pathways, including regulation of cell growth, proliferation, and motility. Using a newly developed platform to identify the signaling pathway/molecular target of natural products, we identified a family of alkaloid natural products, discoipyrroles A-D (1-4), from Bacillus hunanensis that inhibit the DDR2 signaling pathway. The structure of 1-4, determined by detailed two-dimensional (2D) NMR methods and confirmed by X-ray crystallographic analysis has an unusual 3H-benzo[d]pyrrolo][1,3]oxazine-3,5-dione core. Discoipyrroles A-D potently inhibit DDR2 dependent migration of BR5 fibroblasts and show selective cytotoxicity to DDR2 mutant lung cancer cell lines (IC50 120-400 nM). Examination of the biosynthesis has led to the conclusion that the discoipyrroles are formed through a nonenzymatic process, leading to a one-pot total synthesis of 1.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Bacillus/química , Productos Biológicos/farmacología , Fibroblastos/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Pirrolidinonas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Receptores Mitogénicos/antagonistas & inhibidores , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Receptores con Dominio Discoidina , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos/citología , Compuestos Heterocíclicos con 3 Anillos/química , Compuestos Heterocíclicos con 3 Anillos/aislamiento & purificación , Humanos , Modelos Moleculares , Estructura Molecular , Pirrolidinonas/química , Pirrolidinonas/aislamiento & purificación , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Mitogénicos/genética , Receptores Mitogénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Estereoisomerismo , Relación Estructura-ActividadRESUMEN
Erythrolic acids A-E (1-5) are five unusual meroterpenoids isolated from the bacterium Erythrobacter sp. derived from a marine sediment sample collected in Galveston, TX. The structures were elucidated by means of detailed spectroscopic analysis and chemical derivatization. The erythrolic acids contain a 4-hydroxybenzoic acid appended with a modified terpene side chain. The side-chain modifications include oxidation of a terminal methyl substituent and in the case of 1-4 addition of a two-carbon unit to give terpene side chains of unusual length: C22 for 1 and 2, C17 for 3, and C12 for 4. The relative and absolute configurations of the meroterpenoids were determined by coupling constant, NOE, and Mosher's analysis. In vitro cytotoxicity toward a number of nonsmall cell lung cancer (NSCLC) cell lines revealed only modest activity for erythrolic acid D (4) (2.5 µM against HCC44). The discovery of these unusual diterpenes, along with the previously reported erythrazoles, demonstrates the natural product potential of a previously unstudied group of bacteria for drug discovery. The unusual nature of the terpene side chain, we believe, involves an oxidation of a terminal methyl group to a carboxylic acid and subsequent Claisen condensation with acetyl-CoA.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/química , Parabenos/química , Sphingomonadaceae/química , Terpenos/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura MolecularRESUMEN
Ammosamides E-F (1-2), are amidine analogs of the ammosamide family of alkaloids isolated from a marine-derived Streptomyces variabilis. Further studies with S. variabilis revealed a variety of aryl and alkyl amines added into the fermentation media could be efficiently incorporated into the ammosamide framework to generate a library of precursor-directed amidine analogs, ammosamides G-P (9 - 18). We demonstrate that the amines are introduced via non-enzymatic addition to the iminium ion of ammosamide C. Biological evaluation of the amidine analogs against quinone reductase 2 (QR2) showed low nM potency for a number of analogs. When tested for in vivo activity against a panel of non-small cell lung cancer (NSCLC) cell-lines there was a clear increase in potency by incorporation of lipophilic alkylamines, with the most potent compounds having sub µM IC(50) values (0.4 to 0.8 µM).