Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 201, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659058

RESUMEN

The utilization of extracellular vesicles (EV) in immunotherapy, aiming at suppressing peripheral immune cells responsible for inflammation, has demonstrated significant efficacy in treating various inflammatory diseases. However, the clinical application of EV has faced challenges due to their inadequate targeting ability. In addition, most of the circulating EV would be cleared by the liver, resulting in a short biological half-life after systemic administration. Inspired by the natural microvesicles (MV, as a subset of large size EV) are originated and shed from the plasma membrane, we developed the immunosuppressive MV-mimetic (MVM) from endotoxin tolerant dendritic cells (DC) by a straightforward and effective extrusion approach, in which DC surface proteins were inherited for providing the homing ability to the spleen, while αCD3 antibodies were conjugated to the MVM membranes for specific targeting of T cells. The engineered MVM carried a large number of bioactive cargos from the parental cells, which exhibited a remarkable ability to promote the induction of regulatory T cells (Treg) and polarization of anti-inflammatory M2 macrophages. Mechanistically, the elevated Treg level by MVM was mediated due to the upregulation of miR-155-3p. Furthermore, it was observed that systemic and local immunosuppression was induced by MVM in models of sepsis and rheumatoid arthritis through the improvement of Treg and M2 macrophages. These findings reveal a promising cell-free strategy for managing inflammatory responses to infections or tissue injury, thereby maintaining immune homeostasis.


Asunto(s)
Micropartículas Derivadas de Células , Células Dendríticas , Inflamación , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Ratones , Inflamación/tratamiento farmacológico , Micropartículas Derivadas de Células/metabolismo , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Vesículas Extracelulares , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Humanos , Inmunoterapia/métodos
2.
Small ; 18(44): e2203114, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36148846

RESUMEN

Although enormous success has been obtained for dendritic cells (DCs)-mediated antigen-specific T cells anticancer immunotherapy in the clinic, it still faces major challenging problems: insufficient DCs in tumor tissue and low response rate for tumor cells lacking antigen expression, especially in low immunogenic tumors such as pancreatic cancer. Here, these challenges are tackled through tumor microenvironment responsive nanogels with prominent tumor-targeting capability by Panc02 cell membranes coating and inhibition of tumor-derived prostaglandin E2 (PGE2), aimed at improving natural killer (NK) cells activation and inducing activated NK cells-dependent DCs recruitment. The engineered nanogels can on-demand release acetaminophen to inhibit PGE2 secretion, thus promoting the activity of NK cells for non-antigen-specific tumor elimination. Furthermore, activated NK cells can secrete chemokines as CC motif chemokine ligand 5 and X-C motif chemokine ligand 1 to recruit immature DCs, and then promote DCs maturation and induce antigen-dependent CD8+ T cells proliferation for enhancing antigen-specific immunotherapy. Notably, these responsive nanogels show excellent therapeutic effect on Panc02 pancreatic tumor growth and postsurgical recurrence, especially combination of the programmed cell death-ligand 1 checkpoint-blockade immunotherapy. Therefore, this study provides a simple strategy for enhancing low immunogenic tumors immunotherapy through an antigen-independent way and antigen-dependent way synergetically.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Pancreáticas , Humanos , Nanogeles , Células Dendríticas/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Ligandos , Células Asesinas Naturales , Inmunoterapia , Quimiocinas/metabolismo , Neoplasias Pancreáticas/terapia , Microambiente Tumoral
3.
Heliyon ; 9(5): e15535, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37144183

RESUMEN

The function played by cartilage intermediate layer protein 2 (CILP2) between colorectal cancer (CRC) progression and immune response remains unclear, especially with respect to immune cell infiltration and checkpoints. Materials and Methods: We examined CILP2 expression in The Cancer Genome Atlas (TCGA) COAD-READ cohort and analyzed its relationship with clinicopathological features, mutations, survival, and immunity. Gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analyses (GSEA) were performed to determine CILP2 related pathways. To further investigate the results of TCGA analysis, validation was performed using CRC cell lines, fresh pathological tissues, and a CRC tissue microarray (TMA). Results: In both TCGA and TMA cohorts, CILP2 expression was increased in CRC tissues and was associated with patient T stage (T3 and T4), N stage (N1), pathological stage (III and IV), and overall survival. Immune cell infiltration and checkpoint analysis revealed that CILP2 expression is highly correlated with multiple immune marker genes, including PD-1. In addition, results of enrichment analysis indicated that CILP2 related genes was mainly enriched in extracellular matrix related functions. Conclusion: Elevated CILP2 expression is associated with adverse CRC clinical features and immune cells, it has potential as a biomarker detrimental to CRC survival.

4.
Photodiagnosis Photodyn Ther ; 40: 103058, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35944846

RESUMEN

Pancreatic cancer is a lethal malignancy and only around 4% of patients will live 5 years post-diagnosis. Photodynamic therapy (PDT) is a promising strategy for treating malignant tumors because of its high selectivity. Through the colocalization of light, oxygen and photosensitizer, a large number of reactive oxygen species (ROS) are generated under excitation at a specific wavelength of a laser, which can induce DNA damage and destroy cancer cells. However, the repair mechanism of cell will repair part of the damaged DNA, which could reduce the efficiency of PDT. The poly (ADP-Ribose) polymerase (PARP) plays a wide and multifaceted role in the cellular response to DNA damage, with growing evidence for participation in multiple pathways of DNA damage repair and genome maintenance. Cells require PARP to resolve single-strand DNA breaks (SSBs) induced by chemotherapy agents. Its inhibition is thought to result in the accumulation of damage in DNA, which may eventually lead to cell death. The combination therapy of PDT and PARP inhibitors may benefit patients. In this study, we design and synthesize a zeolitic imidazolate framework-8 (ZIF-8) to co-deliver DNA damaging agent Chlorin e6 (Ce6) and PARP inhibitor Olaparib (Ola). Ce6 and Ola demonstrate strong synergistic actions, providing a novel approach for the treatment of pancreatic cancer.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Fotoquimioterapia , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Fotoquimioterapia/métodos , Poli(ADP-Ribosa) Polimerasas , Daño del ADN , Antineoplásicos/farmacología , ADN , Neoplasias Pancreáticas/tratamiento farmacológico , Línea Celular Tumoral
5.
Int J Nanomedicine ; 16: 8433-8446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002237

RESUMEN

PURPOSE: Cell membrane-camouflaged nanoparticles (NPs) are drawing increasing attention because their surfaces acquire some characteristics of the cell membranes, making them a unique class of biomimetic materials for diverse applications. Modification of cell membrane or combination of different types of membranes can enhance their functionality. METHODS: We prepared platelet and tumor cell membrane camouflaged ß-mangostin-loaded NPs, which were synthesized with platelet-C6 hybrid biomimetic coating, poly(lactic-co-glycolic acid), and ß-mangostin (ß-PCNPs). Then, we evaluated their targeting ability and anticancer activity against glioma in vitro and in vivo. RESULTS: Biomimetic coating enhanced active drug targeting and immune escape properties of nanocarrier in C6 and THP-1 cells, respectively, which improved their cytotoxicity. ß-PCNPs were characterized to study the inherent properties of both source cells. Compared with bare ß-NPs, ß-PCNPs exhibited high tumor-targeting capability and induced apoptosis of C6 cells in vitro. Similarly, intravenous administration of drug through ß-PCNPs resulted in enhanced tumor-targeting and exhibited excellent rate of inhibition of glioma tumor growth in mice. Moreover, the blood circulation time of drug in mice in the ß-PCNP group was markedly prolonged and these mice exhibited better outcome than those in the ß-NP group. CONCLUSION: These results provide a new strategy of utilizing PCNPs as carriers for drug delivery, which improves the targeting efficiency and therapeutic efficacy of chemotherapeutic agents for glioma therapy.


Asunto(s)
Antineoplásicos , Glioma , Nanopartículas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Membrana Celular , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Glioma/tratamiento farmacológico , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA