RESUMEN
As one kind of approximation of the full configuration interaction solution, the selected configuration interaction (sCI) methods have been shown to be valuable for large active spaces. However, the inclusion of dynamic correlation beyond large active spaces is necessary for more quantitative results. Since the sCI wave function can provide a compact reference for multireference methods, previously, we proposed an externally contracted multireference configuration interaction method using the sCI reference reconstructed from the density matrix renormalization group wave function [J. Chem. Theory Comput. 2018, 14, 4747-4755]. The DMRG2sCI-EC-MRCI method is promising for dealing with more than 30 active orbitals and large basis sets. However, it suffers from two drawbacks: spin contamination and low efficiency when using Slater determinant bases. To solve these problems, in this work, we adopt configuration state function bases and introduce a new algorithm based on the hybrid of tree structure for convenient configuration space management and the graphical unitary group approach for efficient matrix element calculation. The test calculation of naphthalene shows that the spin-adapted version could achieve a speed-up of 6.0 compared with the previous version based on the Slater determinant. Examples of dinuclear copper(II) compound as well as Ln(III) and An(III) complexes show that the sCI-EC-MRCI can give quantitatively accurate results by including dynamic correlation over sCI for systems with large active spaces and basis sets.
RESUMEN
We develop and demonstrate how to use the Graphical Unitary Group Approach (GUGA)-based MRCISD with Core-Valence Separation (CVS) approximation to compute the core-excited states. First, perform a normal Self-Consistent-Field (SCF) or valence MCSCF calculation to optimize the molecular orbitals. Second, rotate the optimized target core orbitals and append to the active space, form an extended CVS active space, and perform a CVS-MCSCF calculation for core-excited states. Finally, construct the CVS-MRCISD expansion space and perform a CVS-MRCISD calculation to optimize the CI coefficients based on the variational method. The CVS approximation with GUGA-based methods can be implemented by flexible truncation of the Distinct Row Table. Eliminating the valence-excited configurations from the CVS-MRCISD expansion space can prevent variational collapse in the Davidson iteration diagonalization. The accuracy of the CVS-MRCISD scheme was investigated for excitation energies and compared with that of the CVS-MCSCF and CVS-CASPT2 methods using the same active space. The results show that CVS-MRCISD is capable of reproducing well-matched vertical core excitation energies that are consistent with experiments by combining large basis sets and a rational reference space. The calculation results also highlight the fact that the dynamic correlation between electrons makes an undeniable contribution in core-excited states.
RESUMEN
BACKGROUND: Short-term personalized vestibular rehabilitation (ST-PVR) can establish stable vestibular compensation. However, there is a lack of a clear definition for clinical indicators that can dynamically reflect the progress of vestibular rehabilitation (VR). OBJECTIVE: To explore the clinical indicators suitable for evaluating the effectiveness of ST-PVR in treating benign recurrent vertigo (BRV). METHODS: In total, 50 patients diagnosed with BRV were enrolled. All patients received the ST-PVR treatment program. At 2 and 4 weeks after rehabilitation, subjective scales, including the visual analogue scale (VAS), dizziness handicap inventory scale (DHI), activities-specific balance confidence scale (ABC) and generalized anxiety disorder (GAD-7) were assessed. Objective vestibular function tests were performed. VR grading was determined. RESULTS: At 2 weeks after rehabilitation, significant enhancements were observed in VAS, DHI, ABC, GAD-7, UW, vHIT results, and VR grading scores (p < 0.05). The sensory organization test (SOT) results demonstrated statistically significant improvements at 2 weeks and 4 weeks after rehabilitation (p < 0.05). CONCLUSION AND SIGNIFICANCE: Both subjective scales and partial examination results in objective assessment can serve as indicators to dynamically monitor the compensatory process of vestibular function in patients with BRV. The VR efficacy grading score, which incorporates the above indicators, allows for quantification of the changes that occur during the vestibular rehabilitation process.
Asunto(s)
Vértigo , Pruebas de Función Vestibular , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Vértigo/rehabilitación , Vértigo/fisiopatología , Pruebas de Función Vestibular/métodos , Resultado del Tratamiento , Anciano , Recurrencia , Equilibrio Postural/fisiologíaRESUMEN
Nonadiabatic molecular dynamics simulations with a global switching algorithm have been performed at the TD-CAM-B3LYP-D3/def2-SVP level of theory for ultrafast photo-induced ring-opening and isomerization reactions upon S1 excitation for 2,2-diphenyl-2H-chromene (DPC). Both DPC-T and DPC-C conformers undergo ring-opening relaxation and isomerization pathways accompanied with pyran conformation conserved and converted on the S1 or S0 states via competition and cooperation between C-O bond dissociation and pyran inversion motions. Upon S1 excitation, the DPC-T mainly relaxes to the T-type conical intersection region and thus yields a higher ring-opening efficiency with a faster S1 decay and intermediate formation than those of the DPC-C mainly relaxing to C-type conical intersection. The simulated ring-opening quantum yield for DPC-T (DPC-C) is 0.91 (0.76), which is in good agreement with the experimental value of 0.7-0.9, and the thermal weight averaged lifetimes are estimated as 182.0 fs, 228.6 fs, and 1262.4 fs for the excited-state decay, intermediate formation, and ring-opening product, respectively. These time constants are in good agreement with the experimentally measured τ1 time constant of 190-450 fs and τ2 time constant of 1000-1800 fs. The present work could be a valuable reference for understanding the nature of the photorelaxation mechanisms of DPC, and could help to develop DPC-based photoresponsive materials.
RESUMEN
A series of binary composites Bi4O5Br2/BiPO4 (PBX) was fabricated through a simple mechanical ball milling protocol. Relevant microstructural, morphological, and optical properties were thoroughly analyzed via various techniques. The integration of both components was confirmed to produce heterojunction domains at the phase boundaries. Upon exposure to visible light irradiation, the as-achieved PBX series possessed the reinforced photocatalytic NOx removal efficiencies and the weakened generation of toxic intermediate NO2 in comparison to both bare components, chiefly attributed to the efficient transport and separation of carriers and boosted production of superoxide radicals (·O2-) through the combination of a wide-bandgap ornament BiPO4 as an electron acceptor. In particular, the composite PB5 with the optimal phase composition exhibited the highest NOx removal of 40% with the lowest NO2 formation of 40 ppb among all tested candidates. According to the band structures' estimation and reactive species' detection, a reasonable mechanism was ultimately proposed to describe the migration of charge carriers and the enhancement of photocatalytic performance.
Asunto(s)
Luz , Oxidantes , SuperóxidosRESUMEN
The BDF (Beijing Density Functional) program package is in the first place a platform for theoretical and methodological developments, standing out particularly in relativistic quantum chemical methods for chemistry and physics of atoms, molecules, and periodic solids containing heavy elements. These include the whole spectrum of relativistic Hamiltonians and their combinations with density functional theory for the electronic structure of ground states as well as time-dependent and static density functional linear response theories for electronically excited states and electric/magnetic properties. However, not to be confused by its name, BDF nowadays comprises also of standard and novel wave function-based correlation methods for the ground and excited states of strongly correlated systems of electrons [e.g., multireference configuration interaction, static-dynamic-static configuration interaction, static-dynamic-static second-order perturbation theory, n-electron valence second-order perturbation theory, iterative configuration interaction (iCI), iCI with selection plus PT2, and equation-of-motion coupled-cluster]. Additional features of BDF include a maximum occupation method for finding excited states of Hartree-Fock/Kohn-Sham (HF/KS) equations, a very efficient localization of HF/KS and complete active space self-consistent field orbitals, and a unique solver for exterior and interior roots of large matrix eigenvalue problems.
RESUMEN
Multi-state n-electron valence state second order perturbation theory (MS-NEVPT2) was utilized to reveal the photorelaxation pathways of 4-(N,N-dimethylamino)-4'-nitrostilbene (DANS) upon S1 excitation. Within the interwoven networks of five S1/S0 and three T2/T1 conical intersections (CIs), and three S1/T2, one S1/T1 and one S0/T1 intersystem crossings (ISCs), those competing nonadiabatic decay pathways play different roles in trans-to-cis and cis-to-trans processes, respectively. After being excited to the Franck-Condon (FC) region of the S1 state, trans-S1-FC firstly encounters an ultrafast conversion to quinoid form. Subsequently, the relaxation mainly proceeds along the triplet pathway, trans-S1-FC â ISC-S1/T2-trans â CI-T2/T1-trans â ISC-S0/T1-twist â trans- or cis-S0. The singlet relaxation pathway mediated by CI-S1/S0-twist-c is hindered by the prominent energy barrier on S1 surface and by the reason that CI-S1/S0-trans and CI-S1/S0-twist-t are both not energetically accessible upon S1 excitation. On the other hand, the cis-S1-FC lies at the top of steeply decreasing potential energy surfaces (PESs) towards the CI-S1/S0-twist-c and CI-S1/S0-DHP regions; therefore, the initial twisting directions of DN and DAP moieties determine the branching ratio between αC=C twisting (cis-S1-FC â CI-S1/S0-twist-c â trans- or cis-S0) and DHP formation relaxation pathways (cis-S1-FC â CI-S1/S0-DHP â DHP-S0) on the S1 surface. Moreover, the DHP formation could also take place via the triplet relaxation pathway, cis-S1-FC â ISC-S1/T1-cis â DHP-T1 â DHP-S0, however, which may be hindered by insufficient spin-orbit coupling (SOC) strength. The other triplet pathways for cis-S1-FC mediated by ISC-S1/T2-cis are negligible due to the energy or geometry incompatibility of possible consecutive stepwise S1 â T2 â T1 or S1 â T2 â S1 processes. The present study reveals photoisomerization dynamic pathways via conical intersection and intersystem crossing networks and provides nice physical insight into experimental investigation of DANS.
Asunto(s)
Estilbenos/química , Isomerismo , Estructura Molecular , Procesos FotoquímicosRESUMEN
Photolysis of pyridazine N-oxide (PNO) results in the detection of a complex series of transient phenomena. On the ultrafast (fs) timescale, we could detect the decay of the first singlet excited state of PNO and the formation of a short-lived transient species, which, based on its time-resolved resonance Raman (TR3) spectrum, we assign to oxaziridine 1,2-diaza-7-oxa-bicyclo[4.1.0]hepta-2,4-diene. On a longer (hundreds of ns) timescale, this species rearranges to a ring-opened diazo compound, which we have also detected by time-resolved infrared and TR3 spectroscopy. In addition, we identify 1-oxa-3,4-diazepine as a long-lived species formed in the photochemistry of PNO. This species is formed via its oxirane isomer, which in turn is likely formed directly from the S1 state of PNO via a conical intersection. The barrier determined experimentally for the decay of 1,2-diaza-7-oxa-bicyclo[4.1.0]hepta-2,4-diene (Ea = (7.1 ± 0.5) kcal mol-1) is far larger than any barrier calculated by any method that includes dynamic electron correlation but very close to the barriers calculated at the RHF or CASSCF levels of theory. Many methods (B3LYP, MP2, and MP4) fail to give a minimum structure for 1,2-diaza-7-oxa-bicyclo[4.1.0]hepta-2,4-diene, while M06, M06-2X, MP3, CCSD, or CCSD(T) yield activation energies for its electrocyclic ring opening that are far too small. In addition, we note that several important geometric parameters, both of 1,2-diaza-7-oxa-bicyclo[4.1.0]hepta-2,4-diene and of the transition state of its ring opening reaction, clearly have reached no convergence, even at the fully optimized CCSD(T)/cc-pVTZ level of theory. We therefore suggest that the transient species described in this contribution might be excellent test molecules for further development of highly correlated and density functional theory methods.
RESUMEN
Avobenzone (AB) is one of the most widely used UVA sunscreens, and it is viewed as a model compound for studying the photoisomerization process. In recent years, Miranda and co-workers studied photophysical and photochemical reactions of several AB derivatives. However, there is still a gap in the data of these compounds in the ultrafast time region. To get a better understanding of the photophysical and photochemical reaction mechanisms, selected AB derivatives of AB-Me, AB-Pr, AB-Br and AB-Cl were studied using ultrafast transient absorption spectroscopy and density functional theory calculations in the present study. It is unravelled that alkylated substituted AB compounds of AB-Me and AB-Pr exhibit an efficient intersystem crossing with the generation of the corresponding triplet state species, which further leads to the Norrish type II reaction for AB-Pr. On the other hand, AB-Br and AB-Cl prefer photochemical reactions via the singlet state surface. Based on the DFT calculations, the spin-orbit coupling constant between the singlet and triplet states, the energy difference between the singlet and triplet states and the natural transition orbital separations of the studied AB compounds were found to be the leading reasons accounting for their corresponding photochemical activities via singlet and triplet states.
RESUMEN
Enantioselective total syntheses of pseudopteroxazole (1) and ileabethoxazole (2) are presented. The two original stereocenters were constructed in excellent enantioselectivity and good diastereoselectivity through Carreira's asymmetric dual catalytic allylation, which shows potential for accessing diastereoisomers at C2 and C3 of 1 and 2. Cationic cyclizations of 13 and 24 demonstrated an effective pathway for the construction of the opposite configurations at C1 in 1 and 2. Additionally, an approach for the introduction of methyl at C4 is a feasible solution for structural modifications at C4 in 1 and 2.
RESUMEN
Single methyl group substitution on the p-position of the phenyl ring (tt-DPB-me1) or the conjugated C[double bond, length as m-dash]C bond (tt-DPB-me2) has been found to enhance the photoisomerization efficiency for two trans,trans-1,4-diphenyl-1,3-butadiene (tt-DPB) derivatives by performing direct ab initio trajectory surface hopping dynamics simulations. With implementation of the Zhu-Nakamura global switching algorithm, on-the-fly trajectory surface hopping dynamics simulations based on the ground state and first excited state potential energies and their gradients calculated by the two state averaged complete active space self-consistent field method with basis set 6-31G were propagated up to 3000 femtoseconds. Four-hundred sampling trajectories have been performed for both tt-DPB-me1 and tt-DPB-me2, and five distinctive photoisomerization pathways were observed for both of them. Among which, One Bond Flipping (OBF) and Hula-Twist (HT) are the dominant photoisomerization mechanisms. The lifetime of the S1 state is estimated to be 1423.0 fs (819.0 fs), and the photoisomerization quantum yields are 0.088 (0.378) in tt â ct, 0.070 (0.015) in tt â tc and 0.073 (0.065) in tt â cc for tt-DPB-me1 (tt-DPB-me2). By analyzing the dynamics simulation data, it can be concluded that closer methyl substitution with respect to the central C[double bond, length as m-dash]C double bond results in a higher percentage of the corresponding photoisomerization products. The present simulation results are in agreement with the ultrafast spectroscopy measurements, which unveil the photoisomerization mechanisms of tt-DPB derivatives and present useful physical insights on how to tune the photoisomerization of the substituted DPB.
RESUMEN
The electronic states of OsSi are calculated by multi-state N-electron valence state second order perturbation theory (MS-NEVPT2) with all-electron basis sets. The relativistic effects are considered comprehensively that allows us to identify the X3Σ0+- ground state. The theoretical equilibrium bond length 2.103 Å is close to the experimental measurement of 2.1207 Å while the vibrational frequency 466 cm-1 is smaller than the experimental value of 516 cm-1. Two excited states, namely 3Π1(I) and 3Π1(II), are located at 15568 and 18316 cm-1 above the ground state, respectively. The 3Π1(I) â X3Σ0+- transition has been assigned to the experimental spectra at 15729 cm-1 and 3Π1(II) â X3Σ0+- may produce the bands near 18469 cm-1. Although the latter transition energy is in accord with the experimental spectra, theoretical calculations give too small oscillator strength. Moreover, plenty of excited states with considerable oscillator strengths are located that could serve as reference data in future experiments. The four low-lying states of OsC are also calculated for comparison.
RESUMEN
A newly developed global switching algorithm that does not require calculation of nonadiabatic coupling vectors reduces computational costs significantly. However, the accuracy of this simplest nonadiabatic molecular dynamic method has not been extensively compared with the conventional Tully's fewest switches. It is necessary to demonstrate the accuracy of this global switching algorithm. An extensive comparison between local and global switching on-the-fly trajectory surface hopping molecular dynamics is performed for cis-to-trans (800 sampling trajectories) and trans-to-cis (600 sampling trajectories) azobenzene photoisomerization at the OM2/MRCI level. The global switching algorithm is coded into the Newton-X program package. Excellent agreement between the two switching algorithms is obtained not only for highly averaged quantities of quantum yields and lifetimes, but also for detailed contour patterns of product distributions, hopping spot distributions and hopping directions in terms of conical intersections between ground and the first excited states. Therefore, the global switching trajectory surface hopping method can be applied to larger complex systems in which nonadiabatic coupling is not available for excited-state molecular dynamic simulations.
RESUMEN
The Zhu-Nakamura formulas based on on-the-fly trajectory surface hopping dynamics simulations at the two-state-averaged CASSCF level were employed to investigate the E â Z photoisomerization mechanisms of hemithioindigo-hemistilbene (HTI) upon S1 excitation. Seven conical intersections were observed along the isomerization pathways, which were composed of double bond torsion, benzene ring torsion, inversion and pyramidalization motions, and only three of them were found to play a role in the dynamics simulations started at S1E-HTI. The dominant isomerization pathway proceeds via central double bond torsion together with pyramidal and tilt motions to some extent (hop via CI5) and accounts for all the reactive trajectories. On the other hand, the two pathways that involve the conical zones lie in the vicinity of the E-form Franck-Condon region (CI7) and proceed along the combined central double bond and benzene ring torsion route (CI3/CI4) with generation of the E products. Within the 332 simulated trajectories, 66 hop to the ground state and only 19 switch to the Z product. The estimated quantum yield of 0.057 (19 in 332) agrees well with the reported experimental value of 0.053 ± 0.016. The excited-state lifetimes span a wide region from hundreds of femtoseconds to several picoseconds, depending on the time for vibrational relaxation and number of cycles for periodical mixed mode torsion.
RESUMEN
We have employed the SA2-CAS(4,4)/6-31G ab initio method together with an on-the-fly global-switching trajectory surface hopping algorithm to simulate photoisomerization reaction dynamics from reactant trans, trans-1,4-diphenyl-1,3-butadiene (DPB) to products cis,trans-DPB and cis,cis-DPB. This topic has been extensively studied experimentally and the present theoretical study is the first to simulate DPB photoisomerization reaction dynamics as far as we know. With total 600 sampling trajectories, 300 actively contribute to isomerization reaction via two conical intersections between the electronic ground and the first excited states. Simulated quantum yields of photoisomerization to cis, trans-DPB and cis, cis-DPB are 0.09 and 0.045, which are in good agreement with the experimental values of 0.07-0.25 and 0.02, respectively. The lifetime of the first excited state is estimated as 702 fs. The present simulation has shown two reactive photoisomerization mechanisms, namely one bond twist (OBT) and bicycle pedal (BP), and two non-reactive photoisomerization mechanisms, namely single bond torsion (SBT) and reverse torsion (RT) with respect to the central backbone CC bonds. We believe that the present theoretical work can benefit the experiments on photoisomerization of DPB derivates.
RESUMEN
By tuning the length and rigidity of the spacer of bis(biurea) ligands L, three structural motifs of the A2 L3 complexes (A represents anion, here orthophosphate PO4 (3-) ), namely helicate, mesocate, and mono-bridged motif, have been assembled by coordination of the ligand to phosphate anion. Crystal structure analysis indicated that in the three complexes, each of the phosphate ions is coordinated by twelve hydrogen bonds from six surrounding urea groups. The anion coordination properties in solution have also been studied. The results further demonstrate the coordination behavior of phosphate ion, which shows strong tendency for coordination saturation and geometrical preference, thus allowing for the assembly of novel anion coordination-based structures as in transition-metal complexes.
RESUMEN
Caged supramolecular systems are promising hosts for guest inclusion, separation, and stabilization. Well-studied examples are mainly metal-coordination-based or covalent architectures. An anion-coordination-based cage that is capable of encapsulating halocarbon guests is reported for the first time. This A4L4-type (A=anion) tetrahedral cage, [(PO4)4L4](12-), assembled from a C3-symmetric tris(bisurea) ligand (L) and phosphate ion (PO4(3-)), readily accommodates a series of quasi-tetrahedral halocarbons, such as the Freon components CFCl3, CF2Cl2, CHFCl2, and C(CH3)F3, and chlorocarbons CH2Cl2, CHCl3, CCl4, C(CH3)Cl3, C(CH3)2Cl2, and C(CH3)3Cl. The guest encapsulation in the solid state is confirmed by crystal structures, while the host-guest interactions in solution were demonstrated by NMR techniques.
RESUMEN
We develop a novel method to simulate analytical nonadiabatic switching probability based on effective coupling and effective collision energy by using only electronic adiabatic potential energy surfaces and its gradients in the case of avoided crossing types of nonadiabatic transitions. In addition, the present method can keep the same time step for computing both on-the-fly trajectory and nonadiabatic transitions accurately. The present method is most useful for localized nonadiabatic transitions induced by conical intersection. We employ the on-the-fly surface hopping algorithm with an ab initio quantum chemistry calculation to demonstrate a dynamic simulation for photoisomerization in azobenzene. Simulated quantum yield and lifetime converge to 0.39 and 53 femtosecond, respectively (0.33 and 0.81 picosecond) for cis-to-trans (trans-to-cis) photoisomerization with up to 800 (600) sampling trajectories. The present results agree well with those of the experiment, as well as results simulated with use of nonadiabatic coupling within Tully's fewest switching method. The present trajectory-based nonadiabatic molecular dynamics free from nonadiabatic coupling greatly enhances the simulation power of molecular dynamics for large complex chemical systems.
RESUMEN
The photoisomerization of cis- and trans-stilbene through conical intersections (CI) is mainly governed by four dihedral angles around central CâC double bonds. The two of them are C-CâC-C and H-CâC-H dihedral angles that are found to form a mirror rotation coordinate, and the mirror plane appears at the two dihedral angles equal to zeros with which the middle state is defined through partial optimization. There exist the first-type of hula-twist-CI enantiomers, the second-type of hula-twist-CI enantiomers, the first-type of one-bond-flip-CI enantiomers, and the second type of one-bond-flip-CI enantiomers as well as cis-enantiomers and trans-enantiomers with respect to this mirror plane. The complete active space self-consistent field method is employed to calculate minimum potential energy profile along the mirror rotation coordinate for each enantiomers, and it is found that the left-hand manifold and the right-hand manifold of potential energy surfaces can be energetically transferred via photoisomerization. Furthermore, two-dimensional potential energy surfaces in terms of the branching plane g-h coordinates are constructed at vicinity of each conical intersection, and the landscapes of conical intersections show distinct feature, and in excited-state four potential wells separated in different section of g-h plane related to different conical intersections which indicate different photoisomerization pathways.
RESUMEN
In this work we present a new internally contracted multi-reference configuration interaction (MRCI) scheme by applying the graphical unitary group approach and the hole-particle symmetry. The latter allows a Distinct Row Table (DRT) to split into a number of sub-DRTs in the active space. In the new scheme a contraction is defined as a linear combination of arcs within a sub-DRT, and connected to the head and tail of the DRT through up-steps and down-steps to generate internally contracted configuration functions. The new scheme deals with the closed-shell (hole) orbitals and external orbitals in the same manner and thus greatly simplifies calculations of coupling coefficients and CI matrix elements. As a result, the number of internal orbitals is no longer a bottleneck of MRCI calculations. The validity and efficiency of the new ic-MRCI code are tested by comparing with the corresponding WK code of the MOLPRO package. The energies obtained from the two codes are essentially identical, and the computational efficiencies of the two codes have their own advantages.