RESUMEN
Accelerated urbanization and industrialization have led to an alarming increase in the generation of wastewater with complex chemical contents. Industrial wastewaters are often a primary source of water contamination. The chemical characterization of different industrial wastewater types is an essential task to interpret the chemical fingerprints of wastewater to identify pollution sources and develop efficient water treatment strategies. In this study, we conduct a non-target chemical analysis for the source characterization of different industrial wastewater samples collected from a chemical industrial park (CIP) located in southeast China. The chemical screening identified volatile and semi-volatile organic compounds that included dibutyl phthalate at a maximum concentration of 13.4 µg/L and phthalic anhydride at 35.9 µg/L. Persistent, mobile, and toxic (PMT) substances among the detected organic compounds were identified and prioritized as high-concern contaminants given their impact on drinking water resources. Moreover, a source analysis of the wastewater collected from the wastewater outlet station indicated that the dye production industry contributed the largest quantities of toxic contaminates (62.6%), and this result was consistent with the ordinary least squares and heatmap results. Thus, our study utilized a combined approach of a non-target chemical analysis, a pollution source identification method, and a PMT assessment of different industrial wastewater samples collected from the CIP. The results of the chemical fingerprints of different industrial wastewater types as well as the results of the PMT assessment benefit risk-based wastewater management and source reduction strategies.
Asunto(s)
Contaminantes Ambientales , Compuestos Orgánicos Volátiles , Contaminantes Químicos del Agua , Contaminantes Ambientales/análisis , Aguas Residuales , Contaminantes Químicos del Agua/análisis , ChinaRESUMEN
Charging of insulators modifies local electric field distribution and increases potential threat to the safety of the gas insulated equipment. In this paper, surface charge tailoring techniques are classified and reviewed by introducing a Dam-flood model. Technical solutions of different charge tailoring methods are compared and discussed. The outlook of potential solutions to suppress charge accumulation is recommended and discussed based on industrial consideration. This paper serves as a guide handbook for engineers and researchers into the study of charge tailoring methods. Meanwhile, we hope that the content of this paper could shed some lights upon charge-free insulators to promote the industrial application of HVDC GIL/GIS.
RESUMEN
Intensive studies have been performed on the improvement of bioethanol production by transformation of lignocellulose biomass. In this study, the digestibility of corn stover was dramatically improved by using laccase immobilized on Cu2+ modified recyclable magnetite nanoparticles, Fe3O4-NH2. After digestion, the laccase was efficiently separated from slurry. The degradation rate of lignin reached 40.76%, and the subsequent cellulose conversion rate 38.37% for 72 h at 35 °C with cellulase at 50 U g-1 of corn stover. Compared to those of free and inactivated mode, the immobilized laccase pre-treatment increased subsequent cellulose conversion rates by 23.98% and 23.34%, respectively. Moreover, the reusability of immobilized laccase activity remained 50% after 6 cycles. The storage and thermal stability of the fixed laccase enhanced by 70% and 24.1% compared to those of free laccase at 65 °C, pH 4.5, respectively. At pH 10.5, it exhibited 16.3% more activities than its free mode at 35 °C. Our study provides a new avenue for improving the production of bioethanol with immobilized laccase for delignification using corn stover as the starting material.
Asunto(s)
Celulasa , Nanopartículas de Magnetita , Hidrólisis , Lacasa , Zea maysRESUMEN
This study assessed key test parameters and pass/fail criteria options for developing a respirator fit capability (RFC) test for half-mask air-purifying particulate respirators. Using a 25-subject test panel, benchmark RFC data were collected for 101 National Institute for Occupational Safety and Health-certified respirator models. These models were further grouped into 61 one-, two-, or three-size families. Fit testing was done using a PortaCount® Plus with N95-Companion accessory and an Occupational Safety and Health Administration-accepted quantitative fit test protocol. Three repeated tests (donnings) per subject/respirator model combination were performed. The panel passing rate (PPR) (number or percentage of the 25-subject panel achieving acceptable fit) was determined for each model using five different alternative criteria for determining acceptable fit. When the 101 models are evaluated individually (i.e., not grouped by families), the percentages of models capable of fitting >75% (19/25 subjects) of the panel were 29% and 32% for subjects achieving a fit factor ≥100 for at least one of the first two donnings and at least one of three donnings, respectively. When the models are evaluated grouped into families and using >75% of panel subjects achieving a fit factor ≥100 for at least one of two donnings as the PPR pass/fail criterion, 48% of all models can pass. When >50% (13/25 subjects) of panel subjects was the PPR criterion, the percentage of passing models increased to 70%. Testing respirators grouped into families and evaluating the first two donnings for each of two respirator sizes provided the best balance between meeting end user expectations and creating a performance bar for manufacturers. Specifying the test criterion for a subject obtaining acceptable fit as achieving a fit factor ≥100 on at least one out of the two donnings is reasonable because a majority of existing respirator families can achieve an PPR of >50% using this criterion. The different test criteria can be considered by standards development organizations when developing standards.
Asunto(s)
Máscaras/normas , Dispositivos de Protección Respiratoria/normas , Diseño de Equipo , Humanos , Ensayo de Materiales/métodos , National Institute for Occupational Safety and Health, U.S. , Exposición Profesional/prevención & control , Estados UnidosRESUMEN
N95 filtering facepiece respirator (FFR) dead space is an important factor for respirator design. The dead space refers to the cavity between the internal surface of the FFR and the wearer's facial surface. This article presents a novel method to estimate the dead space volume of FFRs and experimental validation. In this study, six FFRs and five headforms (small, medium, large, long/narrow, and short/wide) are used for various FFR and headform combinations. Microsoft Kinect Sensors (Microsoft Corporation, Redmond, WA) are used to scan the headforms without respirators and then scan the headforms with the FFRs donned. The FFR dead space is formed through geometric modeling software, and finally the volume is obtained through LS-DYNA (Livermore Software Technology Corporation, Livermore, CA). In the experimental validation, water is used to measure the dead space. The simulation and experimental dead space volumes are 107.5-167.5 mL and 98.4-165.7 mL, respectively. Linear regression analysis is conducted to correlate the results from Kinect and water, and R(2) = 0.85.
Asunto(s)
Simulación por Computador , Dispositivos de Protección Respiratoria , Diseño de Equipo , Cabeza/anatomía & histología , Modelos Lineales , Modelos Anatómicos , Exposición Profesional/prevención & controlRESUMEN
In a respirator fit test, a subject is required to perform a series of exercises that include moving the head up and down and rotating the head left and right. These head movements could affect respirator sealing properties during the fit test and consequently affect fit factors. In a model-based system, it is desirable to have similar capability to predict newly designed respirators. In our previous work, finite element modeling (FEM)-based contact simulation between a headform and a filtering facepiece respirator was carried out. However, the headform was assumed to be static or fixed. This paper presents the first part of a series study on the effect of headform movement on contact pressures-a new headform with the capability to move down (flexion), up (extension), and rotate left and right-and validation. The newly developed headforms were validated for movement by comparing the simulated cervical vertebrae rotation angles with experimental results from the literature.
Asunto(s)
Simulación por Computador , Movimientos de la Cabeza , Ensayo de Materiales/métodos , Modelos Anatómicos , Dispositivos de Protección Respiratoria , Fenómenos Biomecánicos , Vértebras Cervicales/fisiología , Diseño de Equipo , Movimientos de la Cabeza/fisiología , Humanos , Exposición Profesional/prevención & control , Presión , Reproducibilidad de los Resultados , Estrés MecánicoRESUMEN
Finite element (FE) filtering facepiece respirators (FFRs) were developed and mated to the new headforms with a cervical spine model. The FFRs from three manufacturers included three sizing systems: (i) a single one-size-fits all, (ii) an FFR with two sizes (S/M and M/L), and (iii) an FFR with three sizes (S, L/M, XL). Finite element method (FEM) simulations of 16 headform and respirator combinations (5 headforms and 6 respirators) were used to examine maximum contact pressure changes for five cases: static head, flexion, extension, left rotation, and right rotation. For each of the 16 headform and respirator combinations, maximum contact pressures of the static headform and motile headforms were compared using t-tests. Significant differences on the maximum contact pressures were found in the extension, left rotation and right rotation at the nose (P < 0.005), the left rotation at the top of right cheek (P = 0.03), and the extension at the bottom of left/right cheek (P = 0.01). When separately considering each headform and each FFR manufacturer, the effects of the four head movement cases on the nose maximum contact pressure changes were observed in the simulations with all five headforms and all FFR manufacturers. The effects of the left and right rotations on the chin maximum contact pressure changes were observed in the simulations with the small headform. It was also found that the use of a nose clip could reduce the impact of the head left/right rotations on nose maximum contact pressure changes. In addition, head movements changed pressure contours of the key nose area. Caused by the head movements, the maximum contact pressure changes may affect seal quality, and the increase of the maximum contact pressures could reduce the facial comfort level.
Asunto(s)
Simulación por Computador , Movimientos de la Cabeza , Ensayo de Materiales/métodos , Modelos Anatómicos , Dispositivos de Protección Respiratoria , Fenómenos Biomecánicos , Diseño de Equipo , Análisis de Elementos Finitos , Movimientos de la Cabeza/fisiología , Humanos , Exposición Profesional/prevención & control , Presión , Reproducibilidad de los Resultados , Estrés MecánicoRESUMEN
The contact area, as well as the contact pressure, is created when a respiratory protection device (a respirator or surgical mask) contacts a human face. A computer-based algorithm for determining the contact area between a headform and N95 filtering facepiece respirator (FFR) was proposed. Six N95 FFRs were applied to five sizes of standard headforms (large, medium, small, long/narrow, and short/wide) to simulate respirator donning. After the contact simulation between a headform and an N95 FFR was conducted, a contact area was determined by extracting the intersection surfaces of the headform and the N95 FFR. Using computer-aided design tools, a superimposed contact area and an average contact area, which are non-uniform rational basis spline (NURBS) surfaces, were developed for each headform. Experiments that directly measured dimensions of the contact areas between headform prototypes and N95 FFRs were used to validate the simulation results. Headform sizes influenced all contact area dimensions (P < 0.0001), and N95 FFR sizing systems influenced all contact area dimensions (P < 0.05) except the left and right chin regions. The medium headform produced the largest contact area, while the large and small headforms produced the smallest.
Asunto(s)
Algoritmos , Dispositivos de Protección Respiratoria , Simulación por Computador , Diseño de Equipo , Humanos , Modelos Anatómicos , Exposición Profesional/prevención & controlRESUMEN
This paper presents a computational fluid dynamics (CFD) simulation approach for the prediction of leakage between an N95 filtering facepiece respirator (FFR) and a headform and an infrared camera (IRC) method for validating the CFD approach. The CFD method was used to calculate leak location(s) and 'filter-to-faceseal leakage' (FTFL) ratio for 10 headforms and 6 FFRs.The computational geometry and leak gaps were determined from analysis of the contact simulation results between each headform-N95 FFR combination. The volumetric mesh was formed using a mesh generation method developed by the authors. The breathing cycle was described as a time-dependent profile of the air velocity through the nostril. Breathing air passes through both the FFR filter medium and the leak gaps. These leak gaps are the areas failing to achieve a seal around the circumference of the FFR. The CFD approach was validated by comparing facial temperatures and leak sites from IRC measurements with eight human subjects. Most leaks appear at the regions of the nose (40%) and right (26%) and left cheek (26%) sites. The results also showed that, with N95 FFR (no exhalation valves) use, there was an increase in the skin temperature at the region near the lip, which may be related to thermal discomfort. The breathing velocity and the viscous resistance coefficient of the FFR filter medium directly impacted the FTFL ratio, while the freestream flow did not show any impact on the FTFL ratio. The proposed CFD approach is a promising alternative method to study FFR leakage if limitations can be overcome.
Asunto(s)
Hidrodinámica , Ensayo de Materiales/métodos , Dispositivos de Protección Respiratoria/normas , Contaminantes Ocupacionales del Aire/análisis , Simulación por Computador , Diseño de Equipo/normas , Filtración/instrumentación , Humanos , Exposición por Inhalación/análisis , Exposición por Inhalación/prevención & control , Maniquíes , Exposición Profesional/análisisRESUMEN
Hydrogels are widely used in biomedical engineering, which often require matched mechanical properties to meet specific demands. Recently, numerous research studies have contributed to tissue engineering hydrogels by soaking strategies to obtain designed properties. Herein, a strategy to fabricate poly(vinyl alcohol)/poly(acrylic acid)-ammonium sulfate (PVA/PAA-AS) hydrogel by successively soaking an aqueous PAA solution and (NH4)2SO4 solution based on the synergy of multiple hydrogen bonding and Hofmeister effect is reported, which exhibits remarkable comprehensive mechanical properties: rigidity (elastic modulus: 0.7-3.6 MPa), strength at break (tensile stress: 3.2-12.0 MPa; strain 320-650%), and toughness (fracture energy: 4.5-30.0 MJ m-3). Besides, PVA/PAA-AS hydrogel with unique spring-like microstructure exhibited super-resilience in 30% strain range by energy-transforming mechanism. Compared with pure PVA hydrogel, PVA/PAA-AS hydrogel has the equal excellent cytocompatibility. Therefore, PVA/PAA-AS hydrogel with high strength, modulus, toughness, super-resilience and excellent biocompatibility has potential applications in the soft tissue engineering field such as muscles, tendons, and ligaments.
Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , Enlace de Hidrógeno , Alcohol Polivinílico/químicaRESUMEN
This article presents a computational and experimental study of contact pressure between six N95 filtering facepiece respirators (FFRs) and five newly developed digital headforms (small, medium, large, long/narrow, and short/wide). Contact interaction is simulated using the finite element method and validated by experiments using a pressure mapping system. The headform model has multiple layers: a skin layer, muscle layer, fatty tissue layer, and bone layer. Each headform is divided into five parts (two parts for the cheeks, one part for the upper forehead, one part for the chin, and one part for the back side of the head). Each respirator model comprises multiple layers and two straps. The simulation process has two stages for each respirator/headform combination. The first stage is to wrap the straps around the back of the headform and pull the respirator away from the face. The second stage is to release the respirator so that the respirator moves toward the face. Strap forces and contact interactions are generated between the respirators and the headforms. Meanwhile, a real-time surface pressure mapping system is used to record the pressures at six key locations to validate the computational results. There is a strong correlation between computational and experimental results (R(2) = 0.88). By comparing the pressure values from simulations and experiments, we have validated the simulation models.
Asunto(s)
Simulación por Computador , Análisis de Elementos Finitos , Ensayo de Materiales/métodos , Modelos Anatómicos , Dispositivos de Protección Respiratoria , Fenómenos Biomecánicos , Diseño de Equipo , Cabeza , Humanos , Presión , Estrés MecánicoRESUMEN
Dielectric capacitors with higher working voltage and power density are favorable candidates for renewable energy systems and pulsed power applications. A polymer with high breakdown strength, low dielectric loss, great scalability, and reliability is a preferred dielectric material for dielectric capacitors. However, their low dielectric constant limits the polymer to achieve satisfying energy density. Therefore, great efforts have been made to get high-energy-density polymer dielectrics. By compositional and structural tailoring, the synergic integrations of the multiple components and optimized structural design effectively improved the energy storage properties. This review presents an overview of recent advancements in the field of high-energy-density polymer dielectrics via compositional and structural tailoring. The surface/interfacial engineering conducted on both microscale and macroscale for polymer dielectrics is the focus of this review. Challenges and the promising opportunities for the development of polymer dielectrics for capacitive energy storage applications are presented at the end of this review.
RESUMEN
Despite a growing preference for second-generation (2G) ethanol in industries, its application is severely restricted owing to a major obstacle of developing a suitable yeast strain for fermentation using feedstock biomasses. In this study, a yeast strain, Saccharomyces cerevisiae A31Z, for 2G bioethanol production was developed from an industrial strain, Angel, using metabolic engineering by the incorporation of gene clusters involved in the xylose metabolism combined with adaptive evolution for evolving its anti-inhibitory properties. This strain outcompeted its ancestors in xylose utilization and subsequent ethanol production and manifested higher tolerance against common inhibitors from lignocellulosic hydrolysates, and also it lowered the production of glycerol by-product. Furthermore, A31Z outperformed in ethanol production using industrial hydrolysate from dried distillers grains with solubles and whole corn. Overall, this study provided a promising path for improving 2G bioethanol production in industries using S. cerevisiae.
RESUMEN
In surgical settings, infectious particulate wound contamination is a recognized cause of post-operative infections. Powered air purifying respirators (PAPRs) are worn by healthcare workers for personal protection against contaminated aerosols. Healthcare infection preventionists have expressed concern about the possibility that infectious particles expelled from PAPR exhalation channels could lead to healthcare-associated disease, especially in operative settings where sterile procedural technique is essential. This study used computational fluid dynamics (CFD) modeling to simulate and visualize the distribution of particles exhaled by PAPR wearers. Using CFD simulations, the PAPR inside to outside ratio of particle concentrations was estimated. Also, the effects of particle sizes, supplied-air flow rates, and breathing work rates on outward leakage were evaluated. This simulation study reconstructed a geometrical model of a static median headform wearing a loose-fitting PAPR by capturing a 3D image. We defined a mathematical model for the headform and PAPR system and ran simulations with four particle sizes, three breathing workloads and two supplied-air flow rates (a total 24 configurations; 4×3×2=24) applied on the digital model of the headform and PAPR system. This model accounts for exhaled particles, but not ambient particles. Computed distributions of particles inside and outside the PAPR are displayed. The outward concentration leakage was low at surgical setting, e.g., it was about 9% for a particle size of 0.1 and 1 µm at light breathing and a 205 L/min supplied-air flow rate. The supplied-air flow rates, particle sizes, and breathing workloads had effects on the outward concentration leakage, as the outward concentration leakage increased as particle size decreased, breathing workload increased, and the supplied-air flow rate decreased. The CFD simulations can help to optimize the supplied-air flow rates. When the loose-fitting PAPR is used, exhaled particles with small size (below 1µm), or heavy breathing workloads, may generate a great risk to the sterile field and should be avoided.
RESUMEN
In surgical settings, infectious particulate wound contamination is a recognized cause of post-operative infections. Powered air-purifying respirators (PAPRs) are widely used by healthcare workers personal protection against infectious aerosols. Healthcare infection preventionists have expressed concern about the possibility that infectious particles expelled from PAPR exhalation channels could lead to healthcare associated infections, especially in operative settings where sterile procedural technique is emphasized. This study used computational fluid dynamics (CFD) modeling to simulate and visualize the distribution of particles exhaled by the PAPR wearer. In CFD simulations, the outward release of the exhaled particles, i.e., ratio of exhaled particle concentration outside the PAPR to that of inside the PAPR, was determined. This study also evaluated the effect of particle sizes, supplied air flow rates, and breathing work rates on outward leakage. This simulation study for the headform and loose-fitting PAPR system included the following four main steps: (1) preprocessing (establishing a geometrical model of a headform wearing a loose-fitting PAPR by capturing a 3D image), (2) defining a mathematical model for the headform and PAPR system, and (3) running a total 24 simulations with four particle sizes, three breathing workloads and two supplied-air flow rates (4×3×2=24) applied on the digital model of the headform and PAPR system, and (4) post-processing the simulation results to visually display the distribution of exhaled particles inside the PAPR and determine the particle concentration of outside the PAPR compared with the concentration inside. We assume that there was no ambient particle, and only exhaled particles existed. The results showed that the ratio of the exhaled particle concentration outside to inside the PAPR were influenced by exhaled particle sizes, breathing workloads, and supplied-air flow rates. We found that outward concentration leakage from PAPR wearers was approximately 9% with a particle size of 0.1 and 1 µm at the light breathing and 205 L/min supplied-air flow rates, which is similar to the respiratory physiology of a health care worker in operative settings, The range of the ratio of exhaled particle concentration leaking outside the PAPR to the exhaled particle concentration inside the PAPR is from 7.6% to 49. We found that supplied air flow rates and work rates have significant impact on outward leakage, the outward concentration leakage increased as particle size decreased, breathing workload increased, and supplied-air flow rate decreased. The results of our simulation study should help provide a foundation for future clinical studies.
RESUMEN
Loose-fitting powered air-purifying respirators (PAPRs) are used in healthcare settings to reduce exposure to high-risk respiratory pathogens. Innovative computational fluid dynamics (CFD) models were developed for evaluating loose-fitting PAPR performance. However, the computational results of the CFD models have not been validated using actual experimental data. Experimental testing to evaluate particle facepiece leakage was performed in a test laboratory using two models of loose-fitting PAPRs. Each model was mounted on a static (non-moving) advanced headform placed in a sodium chloride (NaCl) aerosol test chamber. The headform performed cyclic breathing via connection to a breathing machine. High-efficiency particulate air (HEPA)-filtered air was supplied directly to the PAPR facepiece using laboratory compressed supplied-air regulated with a mass-flow controller. One model was evaluated with six supplied-air flowrates from 50-215 L/min (Lpm) and the other model with six flowrates from 50-205 Lpm. Three different workrates (minute volumes) were evaluated: low (25 Lpm), moderate 46 (Lpm), and high 88 (Lpm). Manikin penetration factor (mPF) was calculated as the ratio of chamber particle concentration to the in-facepiece concentration. Overall, data analyses indicated that the mPF results from the simulations were well correlated with the experimental laboratory data for all data combined (r = 0.88). For data at the three different workrates (high, moderate, low) for both models combined, the r-values were 0.96, 0.97, and 0.77, respectively. The CFD models of the two PAPR models were validated and may be utilized for further research.
RESUMEN
Silicone rubber (SIR) is widely used as an insulation material in high voltage cable accessories. Electrical tree is a typical electrical degradation and is easily initiated because of the distorted electric field. In this study, graphene nanoplatelets at contents of 0.001-0.010 wt % (0.00044-0.00436 vol %) were added into SIR to improve the electrical tree inhibiting ability. Scanning electron microscopy, conductivity and surface potential decay tests were conducted to analyze the characteristics of graphene/SIR nanocomposites. The typical electrical treeing experiment was employed to observe the electrical tree inhibition of graphene in SIR. The results show that graphene nanoplatelets were well dispersed in SIR. The conductivity was higher after the addition of graphene nanoplatelets, and the trap distribution was affected by graphene nanoplatelets. The tree was changed from a bush-branch structure to a bush structure after the addition of graphene. Tree inception voltage improved and reached the highest mean value at 0.003 wt %. The tree length was inhibited at 0.001 to 0.007 wt % and the lowest tree length occurred at 0.005 wt %.
RESUMEN
Long term storage of personal protective equipment (PPE) in stockpiles is increasingly common in preparation for use during public health emergency responses. Confidence in PPE requires an understanding of the impact of time in storage on all aspects of PPE effectiveness, including protection against inward leakage. Disposable N95 filtering facepiece respirators (FFR) typically rely upon inexpensive elastomeric head straps to provide an effective seal between the filter body and the wearer's face. Annual fit testing provides a measure of assurance that a model fresh from the manufacturer will prove effective, but seal quality may degrade during long term storage. This study examines the stability of a s election of polyisoprene elastomer straps taken from various ages of common N95 FFRs. The tension of the straps at a predetermined strain of 150% was found to differ according to age for one respirator model, though whether due to age or due to manufacturing variations could not be determined. The straps from one manufacturer were found to have notable variation in length, indicating that minor variations in strap tensile properties may not result in significant differences in respirator seal quality. Based on our observations, prolonged storage may affect the tensile properties of headstraps for some models of N95.
RESUMEN
OBJECTIVE: Loose-fitting powered air-purifying respirators (PAPRs) are increasingly being used in healthcare. NIOSH has previously used advanced manikin headforms to develop methods to evaluate filtering facepiece respirator fit; research has now begun to develop methods to evaluate PAPR performance using headforms. This preliminary study investigated the performance of PAPRs at different work rates to support development of a manikin-based test method. METHODS: Manikin penetration factors (mPF) of three models of loose-fitting PAPRs were measured at four different work rates (REST: 11 Lpm, LOW: 25 Lpm, MODERATE: 48 Lpm, and HIGH: 88 Lpm) using a medium-sized NIOSH static advanced headform mounted onto a torso. In-mask differential pressure was monitored throughout each test. Two condensation particle counters were used to measure the sodium chloride aerosol concentrations in the test chamber and also inside the PAPR facepiece over a 2-minute sample period. Two test system configurations were evaluated for returning air to the headform in the exhalation cycle (filtered and unfiltered). Geometric mean (GM) and 5th percentile mPFs for each model/work rate combination were computed. Analysis of variance tests were used to assess the variables affecting mPF. RESULTS: PAPR model, work rate, and test configuration significantly affected PAPR performance. PAPR airflow rates for the three models were approximately 185, 210, and 235 Lpm. All models achieved GM mPFs and 5th percentile mPFs greater than their designated Occupational Safety and Health Administration assigned protection factors despite negative minimum pressures observed for some work rate/model combinations. CONCLUSIONS: PAPR model, work rate, and test configuration affect PAPR performance. Advanced headforms have potential for assessing PAPR performance once test methods can be matured. A manikin-based inward leakage test method for PAPRs can be further developed using the knowledge gained from this study. Future studies should vary PAPR airflow rate to better understand the effects on performance. Additional future research is needed to evaluate the correlation of PAPR performance using advanced headforms to the performance measured with human subjects.
RESUMEN
In recent years, there has been a concerted effort for greater job safety in all industries. Personnel protective equipment (PPE) has been developed to help mitigate the risk of injury to humans that might be exposed to hazardous situations. The human head is the most vulnerable to impact as a moderate magnitude can cause serious injury or death. That is why industries have required the use of an industrial hard hat or helmet. There have only been a few articles published to date that are focused on the risk of head injury when wearing an industrial helmet. A full understanding of the effectiveness of construction helmets on reducing injury is lacking. This paper presents a simulation-based method to determine the threshold at which a human will sustain injury when wearing a construction helmet and assesses the risk of injury for wearers of construction helmets or hard hats. Advanced finite element, or FE, models were developed to study the impact on construction helmets. The FE model consists of two parts: the helmet and the human models. The human model consists of a brain, enclosed by a skull and an outer layer of skin. The level and probability of injury to the head was determined using both the head injury criterion (HIC) and tolerance limits set by Deck and Willinger. The HIC has been widely used to assess the likelihood of head injury in vehicles. The tolerance levels proposed by Deck and Willinger are more suited for finite element models but lack wide-scale validation. Different cases of impact were studied using LSTC's LS-DYNA.