Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Clin Invest ; 52(4): e13694, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34694635

RESUMEN

BACKGROUND: Methamphetamine abuse is a worldwide concern with long-term health complications. Its impact on neurons has been extensively investigated, and it is currently known that glial cells, including astrocytes, are involved in drug-induced outcomes. Importantly, METH also causes blood-brain barrier (BBB) disruption and astrocytes are critical for BBB (dys)function. Therefore, we aimed to clarify the involvement of neuroinflammation mediated by astrocytes in BBB permeability and brain oedema induced by METH. Further, we aimed to identify a new approach to counteract METH effects. METHODS: Mice were administered with a METH binge regimen (4 × 10 mg/kg) alone or in combination with parthenolide (PTL; 4 × 1 mg/kg), and hippocampi were analysed. For in vitro studies, mouse primary cultures of astrocytes were exposed to 250 µM METH, alone or co-treated with 10 µM PTL. RESULTS: We observed a neuroinflammatory response characterized by astrocytic morphological changes and increased TNF-α, iNOS and ICAM-1 protein levels (213.62%, 205.76% and 191.47% of control, respectively). Additionally, brain oedema and BBB disruption were identified by increased water content (81.30% of tissue weight) and albumin (224.40% of control) in the hippocampal tissue, as well as a significant decrease in vessel coverage by astrocytes after METH exposure. Regarding astrocyte cultures, we further identified TNF-α as a key player in METH-induced cell swelling. Importantly, PTL (present in feverfew plant) prevented both animal and in vitro effects induced by METH. CONCLUSIONS: We provided important insights on brain dysfunction induced by METH, and we also suggest a new approach to counteract such negative effects.


Asunto(s)
Astrocitos/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Metanfetamina/farmacología , Sesquiterpenos/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Brain Behav Immun ; 68: 169-182, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29061363

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is the most prevalent childhood mental disorders that often persists into adulthood. Moreover, methylphenidate (MPH) is the mainstay of medical treatment for this disorder. Yet, not much is known about the neurobiological impact of MPH on control versus ADHD conditions, which is crucial to simultaneously clarify the misuse/abuse versus therapeutic use of this psychostimulant. In the present study, we applied biochemical and behavioral approaches to broadly explore the early-life chronic exposure of two different doses of MPH (1.5 and 5 mg/kg/day) on control and ADHD rats (Wistar Kyoto and Spontaneously Hypertensive rats, respectively). We concluded that the higher dose of MPH promoted blood-brain barrier (BBB) permeability and elicited anxiety-like behavior in both control and ADHD animals. BBB dysfunction triggered by MPH was particularly prominent in control rats, which was characterized by a marked disruption of intercellular junctions, an increase of endothelial vesicles, and an upregulation of adhesion molecules concomitantly with the infiltration of peripheral immune cells into the prefrontal cortex. Moreover, both doses of MPH induced a robust neuroinflammatory and oxidative response in control rats. Curiously, in the ADHD model, the lower dose of MPH (1.5 mg/kg/day) had a beneficial effect since it balanced both immunity and behavior relative to vehicle animals. Overall, the contrasting effects of MPH observed between control and ADHD models support the importance of an appropriate MPH dose regimen for ADHD, and also suggest that MPH misuse negatively affects brain and behavior.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Privilegio Inmunológico/fisiología , Metilfenidato/farmacología , Animales , Ansiedad/metabolismo , Atención/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Estimulantes del Sistema Nervioso Central , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Privilegio Inmunológico/inmunología , Masculino , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
3.
Brain Behav Immun ; 62: 306-317, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28237710

RESUMEN

Methamphetamine (METH) is a highly addictive psychostimulant drug that can lead to neurological and psychiatric abnormalities. Several studies have explored the central impact of METH use, but the mechanism(s) underlying blood-brain barrier (BBB) dysfunction and associated neuroinflammatory processes after chronic METH consumption are still unclear. Important findings in the field are mainly based on in vitro approaches and animal studies using an acute METH paradigm, and not much is known about the neurovascular alterations under a chronic drug use. Thus, the present study aimed to fill this crucial gap by exploring the effect of METH-self administration on BBB function and neuroinflammatory responses. Herein, we observed an increase of BBB permeability characterized by Evans blue and albumin extravasation in the rat hippocampus and striatum triggered by extended-access METH self-administration followed by forced abstinence. Also, there was a clear structural alteration of blood vessels showed by the down-regulation of collagen IV staining, which is an important protein of the endothelial basement membrane, together with a decrease of intercellular junction protein levels, namely claudin-5, occludin and vascular endothelial-cadherin. Additionally, we observed an up-regulation of vascular cell and intercellular adhesion molecule, concomitant with the presence of T cell antigen CD4 and tissue macrophage marker CD169 in the brain parenchyma. Rats trained to self-administer METH also presented a neuroinflammatory profile characterized by microglial activation, astrogliosis and increased pro-inflammatory mediators, namely tumor necrosis factor-alpha, interleukine-1 beta, and matrix metalloproteinase-9. Overall, our data provide new insights into METH abuse consequences, with a special focus on neurovascular dysfunction and neuroinflammatory response, which may help to find novel approaches to prevent or diminish brain dysfunction triggered by this overwhelming illicit drug.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/administración & dosificación , Cuerpo Estriado/efectos de los fármacos , Hipocampo/efectos de los fármacos , Inflamación/etiología , Metanfetamina/administración & dosificación , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Claudina-5/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Hipocampo/metabolismo , Hipocampo/patología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ocludina/metabolismo , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar , Autoadministración
4.
Cell Mol Life Sci ; 73(24): 4701-4716, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27376435

RESUMEN

Methylphenidate (MPH) is an amphetamine-like stimulant commonly prescribed for attention deficit hyperactivity disorder. Despite its widespread use, the cellular/molecular effects of MPH remain elusive. Here, we report a novel direct role of MPH on the regulation of macromolecular flux through human brain endothelial cells (ECs). MPH significantly increased caveolae-mediated transcytosis of horseradish peroxidase through ECs without affecting paracellular permeability. Using FRET-based live cell imaging, together with pharmacological inhibitors and lentiviral-mediated shRNA knockdown, we demonstrate that MPH promoted ROS generation via activation of Rac1-dependent NADPH oxidase (NOX) and c-Src activation at the plasma membrane. c-Src in turn was shown to mediate the phosphorylation of caveolin-1 (Cav1) on Tyr14 leading to enhanced caveolae formation and transendothelial transport. Accordingly, the inhibition of Cav1 phosphorylation by overexpression of a phosphodefective Cav1Y14F mutant or knocking down Cav1 expression abrogated MPH-induced transcytosis. In addition, both vitamin C and inhibition of NOX blocked MPH-triggered vesicular transport. This study, therefore, identifies Rac1/NOX/c-Src-dependent signaling in MPH-induced increase in transendothelial permeability of brain endothelial cell monolayers via caveolae-mediated transcytosis.


Asunto(s)
Caveolas/metabolismo , Caveolina 1/metabolismo , Células Endoteliales/metabolismo , Metilfenidato/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transcitosis/efectos de los fármacos , Proteína de Unión al GTP rac1/metabolismo , Familia-src Quinasas/metabolismo , Transporte Biológico/efectos de los fármacos , Encéfalo/citología , Proteína Tirosina Quinasa CSK , Permeabilidad Capilar/efectos de los fármacos , Caveolas/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Modelos Biológicos , NADPH Oxidasas/metabolismo , Oxidantes/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Vesículas Transportadoras/efectos de los fármacos , Vesículas Transportadoras/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
5.
Toxicol Lett ; 389: 1-10, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37844808

RESUMEN

Methylphenidate (MPH) has been used for decades to treat attention-deficit/hyperactivity disorder (ADHD) and narcolepsy. Moreover, several studies have shown that it is subject to misuse, particularly among college students and adolescents, for cognitive enhancement or as a recreational drug. This phenomenon causes concern, and it is critical to clarify better how MPH impacts brain cells. In fact, data has suggested that MPH could result in neuroinflammation and neurodegeneration across several brain regions; however, little is known about the effect of MPH on glial cells. To address this, we used microglia N9 cell line and primary cultures of cortical astrocytes that were exposed to MPH (0.01 - 2 mM), as well as Wistar Kyoto rats (WKY) chronically administered with MPH (1.5 mg/kg/day). Several parameters were analyzed, and we concluded that MPH has no significant direct effect on microglial cells, apart from cell migration impairment. On the contrary, MPH promotes astrogliosis, oxidative/nitrosative stress, and increases proinflammatory cytokine TNF levels by astrocytes, which was concordant with the results obtained in the hippocampus of WKY rats. Overall, the present results suggest that brain cells respond differently to MPH, with a more prominent direct effect on astrocytes when compared to microglia.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Metilfenidato , Humanos , Ratas , Animales , Adolescente , Metilfenidato/toxicidad , Estimulantes del Sistema Nervioso Central/toxicidad , Microglía , Astrocitos , Ratas Endogámicas WKY
6.
Antioxidants (Basel) ; 12(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37107312

RESUMEN

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most prevalent neurodevelopmental disorders. Interestingly, children with ADHD seem to experience more ophthalmologic abnormalities, and the impact of methylphenidate (MPH) use on retinal physiology remains unclear. Thus, we aimed to unravel the retina's structural, functional, and cellular alterations and the impact of MPH in ADHD versus the control conditions. For that, spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were used as animal models of ADHD and the controls, respectively. Animals were divided into four experimental groups as follows: WKY vehicle (Veh; tap water), WKY MPH (1.5 mg/kg/day), SHR Veh, SHR MPH. Individual administration was performed by gavage between P28-P55. Retinal physiology and structure were evaluated at P56 followed by tissue collection and analysis. The ADHD animal model presents the retinal structural, functional, and neuronal deficits, as well as the microglial reactivity, astrogliosis, blood-retinal barrier (BRB) hyperpermeability and a pro-inflammatory status. In this model, MPH had a beneficial effect on reducing microgliosis, BRB dysfunction, and inflammatory response, but did not correct the neuronal and functional alterations in the retina. Curiously, in the control animals, MPH showed an opposite effect since it impaired the retinal function, neuronal cells, and BRB integrity, and also promoted both microglia reactivity and upregulation of pro-inflammatory mediators. This study unveils the retinal alterations in ADHD and the opposite effects induced by MPH in the retina of ADHD and the control animal models.

7.
Toxicol Lett ; 334: 53-59, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32956829

RESUMEN

Methamphetamine (METH) consumption is a health problem that leads to neurological and psychiatric disturbances. The cellular alterations behind these conditions have been extensively investigated and it is now well-established that METH causes cerebrovascular alterations being a key feature in drug-induced neuropathology. Although promising advances in understanding the blood-brain barrier (BBB) alterations induced by METH, there is still no available approach to counteract or diminish such effects. Interestingly, several studies show that neuropeptide Y (NPY) has an important protective role against METH-induced neuronal and glial toxicity, as well as behavioral deficits. Despite these beneficial effects of the NPY system, nothing is known about its role in brain endothelial cells under conditions of METH exposure. Thus, our aim was to unravel the effect of NPY and its receptors against METH-induced endothelial cell dysfunction. For that, we used a human brain microvascular endothelial cell line (hCMEC/D3) and our results demonstrate that endothelial cells express both NPY Y1 (Y1R) and Y2 (Y2R) receptors, but only Y2R is upregulated after METH exposure. Moreover, this drug of abuse induced endothelial cell death and elicited the production of reactive oxygen species (ROS) by these cells, which were prevented by the activation of Y2R. Additional, cell death and oxidative stress triggered by METH were dependent on the concentration of the drug. In sum, with the present study we identified for the first time the NPY system, and particularly the Y2R subtype, as a promising target to protect against METH-induced neurovascular dysfunction.


Asunto(s)
Encéfalo/irrigación sanguínea , Estimulantes del Sistema Nervioso Central/toxicidad , Células Endoteliales/efectos de los fármacos , Metanfetamina/toxicidad , Estrés Oxidativo/efectos de los fármacos , Receptores de Neuropéptido Y/agonistas , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Muerte Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Humanos , Microvasos/citología , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Neuropéptido Y/análogos & derivados , Neuropéptido Y/farmacología , Fragmentos de Péptidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Neuropéptido Y/antagonistas & inhibidores , Receptores de Neuropéptido Y/genética , Regulación hacia Arriba
8.
Eur Neuropsychopharmacol ; 29(2): 195-210, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30554860

RESUMEN

Methylphenidate (MPH) is the classic treatment for attention deficit hyperactivity disorder (ADHD) among children and adults. Despite its beneficial effects, non-medical use of MPH is nowadays a problem with high impact on society. Thus, our goal was to uncover the neurovascular and cognitive effects of MPH chronic use during a critical period of development in control conditions. For that, male Wistar Kyoto rats were treated with MPH (1.5 or 5 mg/kg/day at weekdays, per os) from P28 to P55. We concluded that the higher dose of MPH caused hippocampal blood-brain barrier (BBB) hyperpermeability by vesicular transport (transcytosis) concomitantly with the presence of peripheral immune cells in the brain parenchyma. These observations were confirmed by in vitro studies, in which the knockdown of caveolin-1 in human brain endothelial cells prevented the increased permeability and leukocytes transmigration triggered by MPH (100 µM, 24 h). Furthermore, MPH led to astrocytic atrophy and to a decrease in the levels of several synaptic proteins and impairment of AKT/CREB signaling, together with working memory deficit assessed in the Y-maze test. On the contrary, we verified that the lower dose of MPH (1.5 mg/kg/day) increased astrocytic processes and upregulated several neuronal proteins as well as signaling pathways involved in synaptic plasticity culminating in working memory improvement. In conclusion, the present study reveals that a lower dose of MPH in normal rats improves memory performance being associated with the modulation of astrocytic morphology and synaptic machinery. However, a higher dose of MPH leads to BBB dysfunction and memory impairment.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Hipocampo/efectos de los fármacos , Memoria/efectos de los fármacos , Metilfenidato/farmacología , Transcitosis/efectos de los fármacos , Animales , Animales Recién Nacidos , Antioxidantes/metabolismo , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Hipocampo/anatomía & histología , Hipocampo/ultraestructura , Peroxidación de Lípido/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transcitosis/fisiología , Regulación hacia Arriba/efectos de los fármacos
9.
Front Nutr ; 5: 131, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687711

RESUMEN

Worldwide, millions of people are exposed to dietary imbalance that impacts in health and quality of life. In developing countries, like in Brazil, in poor settings, dietary habits, traditionally hypoproteic, are changing rapidly to western-type high-fat foods. These rapidly changing dietary habits are imposing new challenges to human health and there are many questions in the field that remain to be answered. Accordingly, we currently do not know if chronic consumption of hypoproteic (regional basic diet, RBD) or high-fat diets (HFD) may impact the brain physiology, contributing to blood-brain barrier (BBB) dysfunction and neuroinflammatory events. To address this issue, mice were challenged by breastfeeding from dams receiving standard, RBD or HFD from suckling day 10 until weaning. Immediately after weaning, mice continued under the same diets until post-natal day 52. Herein, we show that both RBD and HFD cause not only a peripheral but also a consistent central neuroinflammatory response, characterized by an increased production of Reactive Oxygen Species (ROS) and pro-inflammatory cytokines. Additionally, BBB hyperpermeability, accounted by an increase in hippocampal albumin content, a decrease in claudin-5 protein levels and collagen IV immunostaining, was also observed together with an upregulation of vascular cell adhesion molecule 1 (VCAM-1). Interestingly, we also identified a significant astrogliosis, manifested by upregulation of GFAP and S100ß levels and an intensification of arbor complexity of these glial cells. In sum, our data show that dietary imbalance, related with hypoproteic or high-fat content, impairs BBB properties potentially favoring the transmigration of peripheral immune cells and induces both a peripheral and central neuroinflammatory status. Noteworthy, neuroinflammatory events in the hippocampus may cause neuronal malfunction leading to cognitive deficits and long-term persistence of this phenomenon may contribute to age-related neurodegenerative diseases.

10.
Mol Autism ; 8: 47, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28932379

RESUMEN

BACKGROUND: Excitation/inhibition (E/I) imbalance remains a widely discussed hypothesis in autism spectrum disorders (ASD). The presence of such an imbalance may potentially define a therapeutic target for the treatment of cognitive disabilities related to this pathology. Consequently, the study of monogenic disorders related to autism, such as neurofibromatosis type 1 (NF1), represents a promising approach to isolate mechanisms underlying ASD-related cognitive disabilities. However, the NF1 mouse model showed increased γ-aminobutyric acid (GABA) neurotransmission, whereas the human disease showed reduced cortical GABA levels. It is therefore important to clarify whether the E/I imbalance hypothesis holds true. We hypothesize that E/I may depend on distinct pre- and postsynaptic push-pull mechanisms that might be are region-dependent. METHODS: In current study, we assessed two critical components of E/I regulation: the concentration of neurotransmitters and levels of GABA(A) receptors. Measurements were performed across the hippocampi, striatum, and prefrontal cortices by combined in vivo magnetic resonance spectroscopy (MRS) and molecular approaches in this ASD-related animal model, the Nf1+/- mouse. RESULTS: Cortical and striatal GABA/glutamate ratios were increased. At the postsynaptic level, very high receptor GABA(A) receptor expression was found in hippocampus, disproportionately to the small reduction in GABA levels. Gabaergic tone (either by receptor levels change or GABA/glutamate ratios) seemed therefore to be enhanced in all regions, although by a different mechanism. CONCLUSIONS: Our data provides support for the hypothesis of E/I imbalance in NF1 while showing that pre- and postsynaptic changes are region-specific. All these findings are consistent with our previous physiological evidence of increased inhibitory tone. Such heterogeneity suggests that therapeutic approaches to address neurochemical imbalance in ASD may need to focus on targets where convergent physiological mechanisms can be found.


Asunto(s)
Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/psicología , Inhibición Psicológica , Fenómenos Fisiológicos del Sistema Nervioso , Animales , Trastorno del Espectro Autista/diagnóstico , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Femenino , Ácido Glutámico/metabolismo , Inmunohistoquímica , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Especificidad de Órganos/genética , Receptores de GABA , Proteínas Virales , Ácido gamma-Aminobutírico/metabolismo
11.
J Cereb Blood Flow Metab ; 35(8): 1260-71, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25899299

RESUMEN

Methamphetamine (METH) is a psychostimulant that causes neurologic and psychiatric abnormalities. Recent studies have suggested that its neurotoxicity may also result from its ability to compromise the blood-brain barrier (BBB). Herein, we show that METH rapidly increased the vesicular transport across endothelial cells (ECs), followed by an increase of paracellular transport. Moreover, METH triggered the release of tumor necrosis factor-alpha (TNF-α), and the blockade of this cytokine or the inhibition of nuclear factor-kappa B (NF-κB) pathway prevented endothelial dysfunction. Since astrocytes have a crucial role in modulating BBB function, we further showed that conditioned medium obtained from astrocytes previously exposed to METH had a negative impact on barrier properties also via TNF-α/NF-κB pathway. Animal studies corroborated the in vitro results. Overall, we show that METH directly interferes with EC properties or indirectly via astrocytes through the release of TNF-α and subsequent activation of NF-κB pathway culminating in barrier dysfunction.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Estimulantes del Sistema Nervioso Central/efectos adversos , Células Endoteliales/metabolismo , Metanfetamina/efectos adversos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Transporte Biológico/efectos de los fármacos , Barrera Hematoencefálica/patología , Estimulantes del Sistema Nervioso Central/farmacología , Células Endoteliales/patología , Metanfetamina/farmacología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA