Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232396

RESUMEN

The eukaryotic DNA replication fork is a hub of enzymes that continuously act to synthesize DNA, propagate DNA methylation and other epigenetic marks, perform quality control, repair nascent DNA, and package this DNA into chromatin. Many of the enzymes involved in these spatiotemporally correlated processes perform their functions by binding to proliferating cell nuclear antigen (PCNA). A long-standing question has been how the plethora of PCNA-binding enzymes exert their activities without interfering with each other. As a first step towards deciphering this complex regulation, we studied how Chromatin Assembly Factor 1 (CAF-1) binds to PCNA. We demonstrate that CAF-1 binds to PCNA in a heretofore uncharacterized manner that depends upon a cation-pi (π) interaction. An arginine residue, conserved among CAF-1 homologs but absent from other PCNA-binding proteins, inserts into the hydrophobic pocket normally occupied by proteins that contain canonical PCNA interaction peptides (PIPs). Mutation of this arginine disrupts the ability of CAF-1 to bind PCNA and to assemble chromatin. The PIP of the CAF-1 p150 subunit resides at the extreme C-terminus of an apparent long α-helix (119 amino acids) that has been reported to bind DNA. The length of that helix and the presence of a PIP at the C-terminus are evolutionarily conserved among numerous species, ranging from yeast to humans. This arrangement of a very long DNA-binding coiled-coil that terminates in PIPs may serve to coordinate DNA and PCNA binding by CAF-1.


Asunto(s)
Cromatina , Replicación del ADN , Aminoácidos/metabolismo , Arginina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Factor 1 de Ensamblaje de la Cromatina/química , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , ADN/metabolismo , Humanos , Péptidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
J Biol Chem ; 289(32): 21844-55, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24920672

RESUMEN

The nucleosome remodeling and deacetylase (NuRD) complex is a widely conserved transcriptional co-regulator that harbors both nucleosome remodeling and histone deacetylase activities. It plays a critical role in the early stages of ES cell differentiation and the reprogramming of somatic to induced pluripotent stem cells. Abnormalities in several NuRD proteins are associated with cancer and aging. We have investigated the architecture of NuRD by determining the structure of a subcomplex comprising RbAp48 and MTA1. Surprisingly, RbAp48 recognizes MTA1 using the same site that it uses to bind histone H4, showing that assembly into NuRD modulates RbAp46/48 interactions with histones. Taken together with other results, our data show that the MTA proteins act as scaffolds for NuRD complex assembly. We further show that the RbAp48-MTA1 interaction is essential for the in vivo integration of RbAp46/48 into the NuRD complex.


Asunto(s)
Histona Desacetilasas/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Proteínas Represoras/química , Proteína 4 de Unión a Retinoblastoma/química , Secuencia de Aminoácidos , Animales , Ensamble y Desensamble de Cromatina , Secuencia Conservada , Cristalografía por Rayos X , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Proteína 7 de Unión a Retinoblastoma/química , Proteína 7 de Unión a Retinoblastoma/genética , Proteína 7 de Unión a Retinoblastoma/metabolismo , Homología de Secuencia de Aminoácido , Transactivadores , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Biol Chem ; 286(2): 1196-203, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21047798

RESUMEN

Chromatin-modifying complexes such as the NuRD complex are recruited to particular genomic sites by gene-specific nuclear factors. Overall, however, little is known about the molecular basis for these interactions. Here, we present the 1.9 Å resolution crystal structure of the NuRD subunit RbAp48 bound to the 15 N-terminal amino acids of the GATA-1 cofactor FOG-1. The FOG-1 peptide contacts a negatively charged binding pocket on top of the RbAp48 ß-propeller that is distinct from the binding surface used by RpAp48 to contact histone H4. We further show that RbAp48 interacts with the NuRD subunit MTA-1 via a surface that is distinct from its FOG-binding pocket, providing a first glimpse into the way in which NuRD assembly facilitates interactions with cofactors. Our RbAp48·FOG-1 structure provides insight into the molecular determinants of FOG-1-dependent association with the NuRD complex and into the links between transcription regulation and nucleosome remodeling.


Asunto(s)
Histona Desacetilasas , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Proteínas Nucleares , Proteínas Represoras , Proteína 4 de Unión a Retinoblastoma , Factores de Transcripción , Transcripción Genética/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Células Cultivadas , Secuencia Conservada , Cristalografía por Rayos X , Histona Desacetilasas/química , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 4 de Unión a Retinoblastoma/química , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Spodoptera , Transactivadores , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-18259051

RESUMEN

The previously determined crystal structure of the bacterial albumin-binding GA module in complex with human serum albumin (HSA) suggested the possibility of utilizing the complex in the study of ligand binding to HSA. As a continuation of these studies, the crystal structure of the HSA-GA complex with the drug molecule naproxen and the fatty acid decanoate bound to HSA has been determined to a resolution of 2.5 A. In terms of drug binding, the structure suggests that the binding of decanoate to the albumin molecule may play a role in making the haemin site in subdomain IB of the albumin molecule available for the binding of naproxen. In addition, structure comparisons with solved structures of HSA and of the HSA-GA complex show that the GA module is capable of binding to different conformations of HSA. The HSA-GA complex therefore emerges as a possible platform for the crystallographic study of specific HSA-drug interactions and of the influence exerted by the presence of fatty acids.


Asunto(s)
Ácidos Grasos/metabolismo , Naproxeno/metabolismo , Albúmina Sérica/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Ácidos Grasos/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Naproxeno/química , Conformación Proteica , Albúmina Sérica/química
5.
FEBS Lett ; 581(17): 3178-82, 2007 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-17575979

RESUMEN

The albumin-binding domain, or GA module, of the peptostreptococcal albumin-binding protein expressed in pathogenic strains of Finegoldia magna is believed to be responsible for the virulence and increased growth rate of these strains. Here we present the 1.4A crystal structure of this domain, and compare it with the crystal structure of the GA-albumin complex. An analysis of protein-protein interactions in the two crystals, and the presence of multimeric GA species in solution, indicate the GA module is "sticky", and is capable of forming contacts with a range of protein surfaces. This might lead to interactions with different host proteins.


Asunto(s)
Proteínas Bacterianas/química , Cristalografía por Rayos X , Albúmina Sérica/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dimerización , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Peptostreptococcus/química , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Albúmina Sérica/química
6.
J Mol Biol ; 377(3): 935-44, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18279889

RESUMEN

Deacetylcephalosporin C acetyltransferase (DAC-AT) catalyses the last step in the biosynthesis of cephalosporin C, a broad-spectrum beta-lactam antibiotic of large clinical importance. The acetyl transfer step has been suggested to be limiting for cephalosporin C biosynthesis, but has so far escaped detailed structural analysis. We present here the crystal structures of DAC-AT in complexes with reaction intermediates, providing crystallographic snapshots of the reaction mechanism. The enzyme is found to belong to the alpha/beta hydrolase class of acetyltransferases, and the structures support previous observations of a double displacement mechanism for the acetyl transfer reaction in other members of this class of enzymes. The structures of DAC-AT reported here provide evidence of a stable acyl-enzyme complex, thus underpinning a mechanism involving acetylation of a catalytic serine residue by acetyl coenzyme A, followed by transfer of the acetyl group to deacetylcephalosporin C through a suggested tetrahedral transition state.


Asunto(s)
Acetiltransferasas/química , Acremonium/enzimología , Cefalosporinas/química , Proteínas Fúngicas/química , Modelos Moleculares , Acetilación , Sitios de Unión , Cefalosporinas/biosíntesis , Cristalografía por Rayos X , Conformación Proteica , Subunidades de Proteína/química
7.
J Biol Chem ; 279(41): 42924-8, 2004 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-15269208

RESUMEN

Many bactericide species express surface proteins that interact with human serum albumin (HSA). Protein PAB from the anaerobic bacterium Finegoldia magna (formerly Peptostreptococcus magnus) represents one of these proteins. Protein PAB contains a domain of 53 amino acid residues known as the GA module. GA homologs are also found in protein G of group C and G streptococci. Here we report the crystal structure of HSA in complex with the GA module of protein PAB. The model of the complex was refined to a resolution of 2.7 A and reveals a novel binding epitope located in domain II of the albumin molecule. The GA module is composed of a left-handed three-helix bundle, and residues from the second helix and the loops surrounding it were found to be involved in HSA binding. Furthermore, the presence of HSA-bound fatty acids seems to influence HSA-GA complex formation. F. magna has a much more restricted host specificity compared with C and G streptococci, which is also reflected in the binding of different animal albumins by proteins PAB and G. The structure of the HSA-GA complex offers a molecular explanation to this unusually clear example of bacterial adaptation.


Asunto(s)
Albúminas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X/métodos , Albúmina Sérica/química , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Sitios de Unión , Ácidos Grasos/química , Bacterias Grampositivas/metabolismo , Humanos , Enlace de Hidrógeno , Péptidos y Proteínas de Señalización Intracelular , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA