Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochim Biophys Acta ; 1840(9): 2978-87, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24810979

RESUMEN

BACKGROUND: Integrins are extracellular matrix receptors involved in several pathologies. Despite homologies between the RGD-binding α5ß1 and αvß3 integrins, selective small antagonists for each heterodimer have been proposed. Herein, we evaluated the effects of such small antagonists in a cellular context, the U87MG cell line, which express both integrins. The aim of the study was to determine if fibronectin-binding integrin antagonists are able to impact on cell adhesion and migration in relationships with their defined affinity and selectivity for α5ß1 and αvß3/ß5 purified integrins. METHODS: Small antagonists were either selective for α5ß1 integrin, for αvß3/ß5 integrin or non-selective. U87MG cell adhesion was evaluated on fibronectin or vitronectin. Migration assays included wound healing recovery and single cell tracking experiments. U87MG cells stably manipulated for the expression of α5 integrin subunit were used to explore the impact of α5ß1 integrin in the biological assays. RESULTS: U87MG cell adhesion on fibronectin or vitronectin was respectively dependent on α5ß1 or αvß3/ß5 integrin. Wound healing migration was dependent on both integrins. However U87MG single cell migration was highly dependent on α5ß1 integrin and was inhibited selectively by α5ß1 integrin antagonists but increased by αvß3/ß5 integrin antagonists. CONCLUSIONS: We provide a rationale for testing new integrin ligands in a cell-based assay to characterize more directly their potential inhibitory effects on integrin cellular functions. GENERAL SIGNIFICANCE: Our data highlight a single cell tracking assay as a powerful cell-based test which may help to characterize true functional integrin antagonists that block α5ß1 integrin-dependent cell migration.


Asunto(s)
Antineoplásicos , Glioma/tratamiento farmacológico , Integrina alfa5beta1/antagonistas & inhibidores , Integrina alfaVbeta3/antagonistas & inhibidores , Cadenas beta de Integrinas , Proteínas de Neoplasias/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Ensayos de Selección de Medicamentos Antitumorales , Glioma/genética , Glioma/metabolismo , Glioma/patología , Humanos , Integrina alfa5beta1/biosíntesis , Integrina alfa5beta1/genética , Integrina alfaVbeta3/biosíntesis , Integrina alfaVbeta3/genética , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética
2.
Clin Cancer Res ; 15(4): 1297-307, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19190131

RESUMEN

PURPOSE: Despite recent progress, colon cancer is often resistant to combination chemotherapy, highlighting the need for development of novel therapeutic approaches. An attractive target is hypoxia-inducible factor-1alpha (HIF-1alpha), a key transcription factor with a pivotal role in tumor cell metabolism. One potential class of therapeutic agents targeting HIF-1alpha are mammalian target of rapamycin inhibitors such as rapamycin. A second class are topoisomerase I inhibitors, such as irinotecan, which are able to inhibit the accumulation of HIF-1alpha. We here investigated whether combination of rapamycin and irinotecan was active in human colon cancer models. EXPERIMENTAL DESIGN: Human metastatic tumors were xenografted in nude mice and treated with low doses of irinotecan alone, rapamycin alone, or combination of both drugs. The cellular effects of irinotecan and rapamycin were further characterized for HT-29 and HCT-116 colon cancer cells in vitro. RESULTS: In contrast to single-agent therapy, xenografted tumors treated with combination of irinotecan and rapamycin showed potent inhibition of the mammalian target of rapamycin/HIF-1alpha axis, which was accompanied by a dramatic reduction in tumor volume. In vitro experiments showed that exposure to low concentrations of the two drugs resulted in massive HT-29 cell death under hypoxic, but not normoxic, conditions, in full agreement with a cytotoxic effect mediated through HIF-1alpha rather than through induction of genotoxic lesions. HCT-116 cells were less sensitive to the combined treatment due to constitutive activation of phosphatidylinositol 3-kinase/Akt and Ras/mitogen-activated protein kinase pathways. CONCLUSION: These results identify HIF-1alpha as a promising target and provide a rationale for clinical trials of low-dose irinotecan and rapamycin combination toward metastatic colon cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Camptotecina/análogos & derivados , Neoplasias del Colon/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Proteínas Quinasas/fisiología , Sirolimus/administración & dosificación , Animales , Camptotecina/administración & dosificación , Camptotecina/farmacología , Línea Celular Tumoral , Neoplasias del Colon/patología , Glucólisis/efectos de los fármacos , Humanos , Irinotecán , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Proteína p53 Supresora de Tumor/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cells ; 9(9)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878021

RESUMEN

Osteosarcoma is the most frequent primary bone tumor diagnosed during adolescence and young adulthood. It is associated with the worst outcomes in the case of poor response to chemotherapy and in metastatic disease. While no molecular biomarkers are clearly and currently associated with those worse situations, the study of pathways involved in the high level of tumor necrosis and in the immune/metabolic intra-tumor environment seems to be a way to understand these resistant and progressive osteosarcomas. In this review, we provide an updated overview of the role of hypoxia in osteosarcoma oncogenesis, progression and during treatment. We describe the role of normoxic/hypoxic environment in normal tissues, bones and osteosarcomas to understand their role and to estimate their druggability. We focus particularly on the role of intra-tumor hypoxia in osteosarcoma cell resistance to treatments and its impact in its endogenous immune component. Together, these previously published observations conduct us to present potential perspectives on the use of therapies targeting hypoxia pathways. These therapies could afford new treatment approaches in this bone cancer. Nevertheless, to study the osteosarcoma cell druggability, we now need specific in vitro models closely mimicking the tumor, its intra-tumor hypoxia and the immune microenvironment to more accurately predict treatment efficacy and be complementary to mouse models.


Asunto(s)
Osteosarcoma/genética , Hipoxia Tumoral/genética , Microambiente Tumoral/genética , Humanos , Osteosarcoma/mortalidad , Análisis de Supervivencia
4.
Mol Ther Nucleic Acids ; 17: 63-77, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31226519

RESUMEN

Nucleic acid aptamers are often referred to as chemical antibodies. Because they possess several advantages, like their smaller size, temperature stability, ease of chemical modification, lack of immunogenicity and toxicity, and lower cost of production, aptamers are promising tools for clinical applications. Aptamers against cell surface protein biomarkers are of particular interest for cancer diagnosis and targeted therapy. In this study, we identified and characterized RNA aptamers targeting cells expressing integrin α5ß1. This αß heterodimeric cell surface receptor is implicated in tumor angiogenesis and solid tumor aggressiveness. In glioblastoma, integrin α5ß1 expression is associated with an aggressive phenotype and a decrease in patient survival. We used a complex and original hybrid SELEX (selective evolution of ligands by exponential enrichment) strategy combining protein-SELEX cycles on the recombinant α5ß1 protein, surrounded by cell-SELEX cycles using two different cell lines. We identified aptamer H02, able to differentiate, in cyto- and histofluorescence assays, glioblastoma cell lines, and tissues from patient-derived tumor xenografts according to their α5 expression levels. Aptamer H02 is therefore an interesting tool for glioblastoma tumor characterization.

5.
Anticancer Res ; 28(1A): 55-68, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18383825

RESUMEN

Two chemosensitive cell lines, LoVo-fusoid (LoVo-f) and LoVo-small cells (LoVo-sc) were derived from the original LoVo cell line. These two variants and the multidrug-resistant (MDR) cell line LoVo-Dox were screened for various properties. In non-permeabilized cells, only LoVo-sc showed mucin-2 staining whereas labelling was positive in all permeabilized cell lines. As shown by electron microscopy screening and by relative resistance to trypsin detachment, only LoVo-sc cells showed strong mucus secretion. All three cell lines displayed strong staining for P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP) and lung-resistance-related protein (LRP) in different locations according to the drug resistance state. The three cell lines showed intracellular labelling of LRP and MRP. The sensitive cells showed P-gp in a large perinuclear ring and in the cytoplasm, but little (LoVo-sc cells) or no staining (LoVo-f cells) was shown at the plasma membrane level. For the Lovo-Dox cells, P-gp was located in the plasma membrane, in cellular anchorages and in the cytoplasm as well. Cell resistance against antineoplastic agents often results from mobilization of various factors, the modulation of which is linked to the culture conditions. As most of the protocols utilize cells growing in (air + 5-10% CO2) atmosphere e.g. 20% O2, balance of the respective participants in the MDR multi-modal mechanism may not be representative of the in vivo situation and may lead to erratic pharmacological response. Indeed, cells within solid tumours were exposed to low pO2, most of them being under hypoxic condition (0.1-5% O2). In the absence of anticancer drugs, all LoVo cell lines grew notably faster at 20% O2 than at 5% O2. Moreover, respective sensitivities of both non-MDR variants to doxorubicin were altered according the pO2. Whatever the pO2 was, virtually none of the antioxidants tested affected the cytotoxic activity of doxorubicin for the three cell lines. By contrast, trolox showed a strong inhibitory effect on doxorubicin activity. These results underline the importance of evaluating the role of hypoxia on the cytotoxic effect of chemotherapeutic agents used either as single drugs or in combination therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias del Colon/tratamiento farmacológico , Doxorrubicina/farmacología , Oxígeno/administración & dosificación , Vinblastina/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antioxidantes/farmacología , Biomarcadores de Tumor/metabolismo , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Doxorrubicina/administración & dosificación , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Mucina 2 , Mucinas/biosíntesis , Complejo Sacarasa-Isomaltasa/metabolismo , Vinblastina/administración & dosificación
6.
Oncotarget ; 7(38): 62194-62207, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27613837

RESUMEN

The Wnt/beta catenin pathway has been highlighted as an important player of brain tumors aggressiveness and resistance to therapies. Increasing knowledges of the regulation of beta-catenin transactivation point out its hub position in different pathophysiological outcomes in glioma such as survival and migration. Crosstalks between integrins and beta-catenin pathways have been suggested in several tumor tissues. As we demonstrated earlier that α5ß1 integrin may be considered as a therapeutic target in high grade glioma through its contribution to glioma cell migration and resistance to chemotherapy, we addressed here the potential relationship between α5ß1 integrin and beta-catenin activation in glioma cells. We demonstrated that overexpression and activation by fibronectin of α5ß1 integrin allowed the transactivation of beta-catenin gene targets included in an EMT-like program that induced an increase in cell migration. Hampering of beta catenin activation and cell migration could be similarly achieved by a specific integrin antagonist. In addition we showed that α5ß1 integrin/AKT axis is mainly involved in these processes. However, blockade of beta-catenin by XAV939 (tankyrase inhibitor leading to beta-catenin degradation) did not synergize with p53 activation aiming to cell apoptosis as was the case with integrin antagonists. We therefore propose a dual implication of α5ß1 integrin/AKT axis in glioma cell resistance to therapies and migration each supported by different signaling pathways. Our data thus suggest that α5ß1 integrin may be added to the growing list of beta-catenin modulators and provide new evidences to assign this integrin as a valuable target to fight high grade glioma.


Asunto(s)
Neoplasias Encefálicas/patología , Movimiento Celular , Glioma/patología , Integrina alfa5beta1/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Apoptosis , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibronectinas/metabolismo , Glioma/genética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Inmunohistoquímica , Integrina alfa5beta1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tanquirasas/antagonistas & inhibidores , Activación Transcripcional/efectos de los fármacos , beta Catenina/antagonistas & inhibidores
7.
Cancer Lett ; 376(2): 328-38, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27063097

RESUMEN

Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Adhesión Celular , Comunicación Celular , Movimiento Celular , Uniones Célula-Matriz/metabolismo , Matriz Extracelular/metabolismo , Integrina alfaV/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Fibronectinas/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Integrina alfaV/genética , Invasividad Neoplásica , Interferencia de ARN , Transducción de Señal , Esferoides Celulares , Factores de Tiempo , Transfección
8.
Anticancer Res ; 25(6B): 3925-35, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16309179

RESUMEN

Membrane vesicles from the multidrug-resistant KB-V1 and KB-C1 cell lines overexpressing P-glycoprotein (Pgp), responsible for pleiotropic chemotherapeutic agents resistance, were solubilized with octyl-glucoside (OG-EX) and further fractionated on DEAE-sepharose column with increased concentrations of NaCl. The fraction containing Pgp (F3) was reconstituted into proteoliposomes (F3-PLP). Comparisons of the phosphorylation levels of Pgp achieved throughout the purification and reconstitution steps were addressed in this study. The [delta32 P] ATP-driven phosphorylation of Pgp was strongly increased in OG-EX, decreased in F3 and not detected in F3-PLP, when compared to Pgp phosphorylation in native plasma membrane vesicles. [delta32 P]ATP-phosphorylation of Pgp in F3-PLP could be restored by exogenously added PKC or by the catalytic sub-unit of PKA. The vanadate-induced hyperphosphorylation effect on Pgp by [delta32 P]ATP observed with plasma membrane vesicles was maintained in OG-EX, but was lost in F3 and did not enable labelling in F3-PLP. Enhancement of [delta32 P]-labelling of native Pgp via [delta32 P]ATP combined with GTP was maintained and also triggered phosphorylation of purified/reconstituted Pgp in F3-PLP as well. Altogether, our data suggest differential phosphorylation patterns of the transporter linked to environmental molecular composition (lipids, presence of detergent) and structure (unfolded versus embedded). In addition, restoration by GTP of Pgp phosphorylation by [delta32 P]ATP in the frame of F3-PLP suggests intra-molecular modulations and hints that other phosphorylation sites and processes, different from the classic ones involving PKC and/or PKA, may participate in the transporter's mechanism.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Proteolípidos/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Humanos , Células KB , Radioisótopos de Fósforo , Fosforilación , Proteolípidos/química
9.
Front Pharmacol ; 6: 279, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635609

RESUMEN

Integrins belong to a large family of αß heterodimeric transmembrane proteins first recognized as adhesion molecules that bind to dedicated elements of the extracellular matrix and also to other surrounding cells. As important sensors of the cell microenvironment, they regulate numerous signaling pathways in response to structural variations of the extracellular matrix. Biochemical and biomechanical cues provided by this matrix and transmitted to cells via integrins are critically modified in tumoral settings. Integrins repertoire are subjected to expression level modifications, in tumor cells, and in surrounding cancer-associated cells, implicated in tumor initiation and progression as well. As critical players in numerous cancer hallmarks, defined by Hanahan and Weinberg (2011), integrins represent pertinent therapeutic targets. We will briefly summarize here our current knowledge about integrin implications in those different hallmarks focusing primarily on ß1 integrins.

10.
Anticancer Res ; 23(3B): 2363-75, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12894516

RESUMEN

The level of protein phosphorylation is known to affect the properties of various membrane proteins. We have previously shown that GTP is capable of greatly enhancing the phosphorylation by [gamma-32P]ATP of P-glycoprotein (Pgp) from KB-V1 cells (3). Investigating the possibility of a general modulation of [gamma-32P]ATP plasma membrane protein phosphorylation, we found that phosphorylation of other membrane proteins are also modulated by various combinations of [ATP + GTP]. The ATP/GTP ratio giving the highest phosphorylation level depended on the protein studied. Modulation of the [gamma-32P]ATP-mediated phosphorylation of numerous membrane proteins requires hydrolysis of both ATP and GTP. ADP and GDP also increased [gamma-32P]ATP-driven phosphorylation but to a lesser extent than GTP. This plasma membrane endogenous phosphorylation activity was neither inhibited by specific inhibitors of protein kinase C, nor by inhibitors of cAMP- or cGMP-dependent protein kinases or of casein kinase II, respectively. Mastoparan, a G-protein regulator, increased the phosphorylation of some proteins that were already enhanced by the presence of [ATP + GTP] mixtures, especially proteins migrating in gels at the same position as P-glycoprotein.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/farmacología , Guanosina Trifosfato/farmacología , Proteínas de la Membrana/metabolismo , Adenosina Trifosfato/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Guanosina Trifosfato/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Células KB , Péptidos , Radioisótopos de Fósforo , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Venenos de Avispas/farmacología
11.
Cancer Lett ; 336(2): 307-18, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23523610

RESUMEN

Integrins emerge nowadays as crucial actors of tumor aggressiveness and resistance to therapies. Integrin α5ß1, the fibronectin receptor, determines malignant properties of colon carcinoma which is one of the most important causes of cancer-related deaths in the world. Here we show that inhibition of α5 integrin subunit expression by siRNA or α5ß1 integrin function by specific antagonist affects the survival of HCT116 colon cancer cells. We also evidence that pharmacological reactivation of the tumor suppressor p53 by Nutlin-3a inhibits specifically the expression of the α5 integrin subunit both at the transcriptional and protein level. Inversely repression of α5 integrin modulates p53 activity. A clear relationship between p53 activation by Nutlin-3a, α5 repression and cell survival is shown. No such effects are obtained in cells lacking p53 or when another non-genotoxic activator of p53, RITA, is used. Our results emphasize the crucial role of α5ß1 integrin in colon tumors. Data also suggest that interfering with the integrin α5ß1 through the reactivation of p53 by Nutlin-3a may be of valuable interest as a new therapeutic option for colon tumors expressing high level of the integrin and a wild type p53.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Imidazoles/farmacología , Integrina alfa5/biosíntesis , Piperazinas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Células HCT116 , Humanos , Integrina alfa5/genética , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos , Transcripción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA