Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 606(7912): 102-108, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35344982

RESUMEN

The advent of total-body positron emission tomography (PET) has vastly broadened the range of research and clinical applications of this powerful molecular imaging technology1. Such possibilities have accelerated progress in fluorine-18 (18F) radiochemistry with numerous methods available to 18F-label (hetero)arenes and alkanes2. However, access to 18F-difluoromethylated molecules in high molar activity is mostly an unsolved problem, despite the indispensability of the difluoromethyl group for pharmaceutical drug discovery3. Here we report a general solution by introducing carbene chemistry to the field of nuclear imaging with a [18F]difluorocarbene reagent capable of a myriad of 18F-difluoromethylation processes. In contrast to the tens of known difluorocarbene reagents, this 18F-reagent is carefully designed for facile accessibility, high molar activity and versatility. The issue of molar activity is solved using an assay examining the likelihood of isotopic dilution on variation of the electronics of the difluorocarbene precursor. Versatility is demonstrated with multiple [18F]difluorocarbene-based reactions including O-H, S-H and N-H insertions, and cross-couplings that harness the reactivity of ubiquitous functional groups such as (thio)phenols, N-heteroarenes and aryl boronic acids that are easy to install. The impact is illustrated with the labelling of highly complex and functionalized biologically relevant molecules and radiotracers.


Asunto(s)
Radioisótopos de Flúor , Hidrocarburos Fluorados , Tomografía de Emisión de Positrones , Radiofármacos , Ácidos Borónicos/química , Radioisótopos de Flúor/química , Hidrocarburos Fluorados/química , Imagen Molecular , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química
2.
Stem Cells ; 42(9): 781-790, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38902932

RESUMEN

The motor symptoms of Parkinson's disease (PD) are caused by the progressive loss of dopamine neurons from the substantia nigra. There are currently no treatments that can slow or reverse the neurodegeneration. To restore the lost neurons, international groups have initiated clinical trials using human embryonic or induced pluripotent stem cells (PSCs) to derive dopamine neuron precursors that are used as transplants to replace the lost neurons. Proof-of-principle experiments in the 1980s and 1990s showed that grafts of fetal ventral mesencephalon, which contains the precursors of the substantial nigra, could, under rare circumstances, reverse symptoms of the disease. Improvements in PSC technology and genomics have inspired researchers to design clinical trials using PSC-derived dopamine neuron precursors as cell replacement therapy for PD. We focus here on 4 such first-in-human clinical trials that have begun in the US, Europe, and Japan. We provide an overview of the sources of PSCs and the methods used to generate cells for transplantation. We discuss pros and cons of strategies for allogeneic, immune-matched, and autologous approaches and novel methods for overcoming rejection by the immune system. We consider challenges for safety and efficacy of the cells for durable engraftment, focusing on the genomics-based quality control methods to assure that the cells will not become cancerous. Finally, since clinical trials like these have never been undertaken before, we comment on the value of cooperation among rivals to contribute to advancements that will finally provide relief for the millions suffering from the symptoms of PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/terapia , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/trasplante , Neuronas Dopaminérgicas/trasplante , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Trasplante de Células Madre/métodos , Animales , Diferenciación Celular
3.
Cell Mol Neurobiol ; 43(5): 2377-2384, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36107359

RESUMEN

The feeding-related hormone, acyl-ghrelin, protects dopamine neurones in murine 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-based models of experimental Parkinson's disease (PD). However, the potential protective effect of acyl-ghrelin on substantia nigra pars compacta (SNpc) dopaminergic neurones and consequent behavioural correlates in the more widely used 6-hydroxydopamine (6-OHDA) rat medial forebrain bundle (MFB) lesion model of PD are unknown. To address this question, acyl-ghrelin levels were raised directly by mini-pump infusion for 7 days prior to unilateral injection of 6-OHDA into the MFB with assessment of amphetamine-induced rotations on days 27 and 35, and immunohistochemical analysis of dopaminergic neurone survival. Whilst acyl-ghrelin treatment was insufficient to elevate food intake or body weight, it attenuated amphetamine-induced circling behaviour and SNpc dopamine neurone loss induced by 6-OHDA. These data support the notion that elevating circulating acyl-ghrelin may be a valuable approach to slow or impair progression of neurone loss in PD.


Asunto(s)
Enfermedad de Parkinson , Ratas , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Oxidopamina , Dopamina , Anfetamina/farmacología , Neuronas Dopaminérgicas
4.
Mov Disord ; 37(3): 613-619, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34766658

RESUMEN

BACKGROUND: The risk of graft-induced dyskinesias (GIDs) presents a major challenge in progressing cell transplantation as a therapy for Parkinson's disease. Current theories implicate the presence of grafted serotonin neurons, hotspots of dopamine release, neuroinflammation and established levodopa-induced dyskinesia. OBJECTIVE: To elucidate the mechanisms of GIDs. METHODS: Neonatally desensitized, dopamine denervated rats received intrastriatal grafts of human embryonic stem cells (hESCs) differentiated into either ventral midbrain dopaminergic progenitor (vmDA) (n = 15) or ventral forebrain cells (n = 14). RESULTS: Of the eight rats with surviving grafts, two vmDA rats developed chronic spontaneous GIDs, which were observed at 30 weeks post-transplantation. GIDs were inhibited by D2 -like receptor antagonists and not affected by 5-HT1A/1B/5-HT6 agonists/antagonists. Grafts in GID rats showed more microglial activation and lacked serotonin neurons. CONCLUSIONS: These findings argue against current thinking that rats do not develop spontaneous GID and that serotonin neurons are causative, rather indicating that GID can be induced in rats by hESC-derived dopamine grafts and, critically, can occur independently of both previous levodopa exposure and grafted serotonin neurons. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Discinesia Inducida por Medicamentos , Discinesias , Enfermedad de Parkinson , Animales , Antiparkinsonianos/efectos adversos , Dopamina , Discinesia Inducida por Medicamentos/etiología , Discinesias/complicaciones , Humanos , Levodopa/efectos adversos , Neuronas , Enfermedad de Parkinson/complicaciones , Ratas , Ratas Sprague-Dawley , Serotonina
5.
J Integr Neurosci ; 21(3): 78, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35633159

RESUMEN

Advanced therapeutic medicinal products (ATMPs), including cell and gene therapies, are in development for Parkinson's disease (PD). In many cases, the goal is to replace the lost dopamine (DA), which is anticipated to improve motor dysfunctions associated with DA loss. However, it is less clear the extent to which these therapeutic interventions may impact on the wide range of cognitive symptoms that manifest as the disease progresses. Although the accepted perception is that cognitive symptoms are predominately non-DAergic in origin, in this commentary, it is argued that several, specific cognitive processes, such as habit formation, working memory and reward processing, have been reported to be DA-dependent. Furthermore, there is evidence of DAergic medications modulating these behaviours in PD patients. Finally, the potential for cell and gene ATMPs to influence these symptoms is considered. It is concluded that DA replacement through ATMPs is likely to improve certain DA-dependent symptoms, but only sparse clinical data are currently available and the ability to precisely titrate DA transmission is likely to be complex.


Asunto(s)
Enfermedad de Parkinson , Cognición , Dopamina/uso terapéutico , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/terapia , Recompensa
6.
Development ; 140(2): 301-12, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23250204

RESUMEN

Medium-sized spiny neurons (MSNs) are the only neostriatum projection neurons, and their degeneration underlies some of the clinical features of Huntington's disease. Using knowledge of human developmental biology and exposure to key neurodevelopmental molecules, human pluripotent stem (hPS) cells were induced to differentiate into MSNs. In a feeder-free adherent culture, ventral telencephalic specification is induced by BMP/TGFß inhibition and subsequent SHH/DKK1 treatment. The emerging FOXG1(+)/GSX2(+) telencephalic progenitors are then terminally differentiated, resulting in the systematic line-independent generation of FOXP1(+)/FOXP2(+)/CTIP2(+)/calbindin(+)/DARPP-32(+) MSNs. Similar to mature MSNs, these neurons carry dopamine and A2a receptors, elicit a typical firing pattern and show inhibitory postsynaptic currents, as well as dopamine neuromodulation and synaptic integration ability in vivo. When transplanted into the striatum of quinolinic acid-lesioned rats, hPS-derived neurons survive and differentiate into DARPP-32(+) neurons, leading to a restoration of apomorphine-induced rotation behavior. In summary, hPS cells can be efficiently driven to acquire a functional striatal fate using an ontogeny-recapitulating stepwise method that represents a platform for in vitro human developmental neurobiology studies and drug screening approaches.


Asunto(s)
Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Adhesión Celular , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Trasplante de Células , Células Madre Embrionarias/citología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Neuronas GABAérgicas/metabolismo , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Placa-Clamp , Ácido Quinolínico/farmacología , ARN/metabolismo , Ratas , Células Madre/citología , Factores de Tiempo
7.
Eur J Neurosci ; 39(10): 1690-703, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24628842

RESUMEN

Although episodic memory deficits are the most conspicuous cognitive change in patients with Alzheimer's disease (AD), patients also display alterations in emotional expression, including anxiety and impaired conditioned fear behaviours. The neural circuitry underlying emotional learning is known to involve the amygdala and hippocampus, although the precise impact of amyloid pathology on the interaction between these brain regions remains unclear. Recent evidence suggests that Tg2576 mice, which express a human amyloid precursor protein (APP) mutation associated with early-onset AD, demonstrate normal acquisition of conditioned freezing to auditory and contextual stimuli paired with footshock. However, examination of the expression of c-Fos revealed altered neural network activity in transgenic mice. In the present study we examined the effects of the APP mutation on the expression of c-Fos following the retrieval of emotional memories. To this end, stimulus-induced cellular activity was measured by analysing expression of the immediate-early gene c-Fos after the retrieval of auditory or contextual fear memories. To characterize regional interdependencies of c-Fos expression, structural equation modelling was used to compare patterns of neural network activity. Consistent with previous findings, Tg2576 mice displayed reduced freezing elicited by the auditory stimulus but not by the conditioning context. Interestingly, the analysis of c-Fos expression revealed that the APPswe mutation disrupted dentate gyrus and amygdala function, as well as altering the influence of these regions on the neural network dynamics activated during context memory retrieval. These results provide novel insight into the influence of excess amyloid production on neural network activity during memory retrieval.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/fisiopatología , Miedo/fisiología , Memoria/fisiología , Estimulación Acústica , Amígdala del Cerebelo/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Animales , Percepción Auditiva/fisiología , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Femenino , Reacción Cataléptica de Congelación/fisiología , Humanos , Ratones Transgénicos , Mutación , Vías Nerviosas/fisiopatología , Proteínas Proto-Oncogénicas c-fos/metabolismo
8.
Handb Clin Neurol ; 205: 193-215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39341655

RESUMEN

Huntington's disease is caused by a CAG repeat expansion in the first exon of the HTT gene, leading to the production of gain-of-toxic-function mutant huntingtin protein species and consequent transcriptional dysregulation and disrupted cell metabolism. The brunt of the disease process is borne by the striatum from the earliest disease stages, with striatal atrophy beginning approximately a decade prior to the onset of neurologic signs. Although the expanded CAG repeat in the HTT gene is necessary and sufficient to cause HD, other genes can influence the age at onset of symptoms and how they progress. Many of these modifier genes have roles in DNA repair and are likely to modulate the stability of the CAG repeat in somatic cells. Currently, there are no disease-modifying treatments for HD that can be prescribed to patients and few symptomatic treatments, but there is a lot of interest in therapeutics that can target the pathogenic pathways at the DNA and RNA levels, some of which have reached the stage of human studies. In contrast, cell therapies aim to replace key neural cells lost to the disease process and/or to support the host vulnerable striatum by direct delivery of cells to the brain. Ultimately it may be possible to combine gene and cell therapies to both slow disease processes and provide some level of neural repair. In this chapter we consider the current status of these therapeutic strategies along with their prospects and challenges.


Asunto(s)
Terapia Genética , Enfermedad de Huntington , Enfermedad de Huntington/terapia , Enfermedad de Huntington/genética , Humanos , Terapia Genética/métodos , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Proteína Huntingtina/genética
9.
iScience ; 27(1): 108670, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38155767

RESUMEN

Dysregulated cholesterol metabolism has been linked to neurodegeneration. We previously found that free, non-esterified, 7α,(25R)26-dihydroxycholesterol (7α,26-diHC), was significantly elevated in the cerebrospinal fluid of patients with Parkinson's disease (PD). In this study we investigated the role of 7α,26-diHC in midbrain dopamine (mDA) neuron development and survival. We report that 7α,26-diHC induces apoptosis and reduces the number of mDA neurons in hESC-derived cultures and in mouse progenitor cultures. Voriconazole, an oxysterol 7α-hydroxylase (CYP7B1) inhibitor, increases the number of mDA neurons and prevents the loss of mDA neurons induced by 7α,26-diHC. These effects are specific since neither 7α,26-diHC nor voriconazole alter the number of Islet1+ oculomotor neurons. Furthermore, our results suggest that elevated 24(S),25-epoxycholesterol, which has been shown to promote mDA neurogenesis, may be partially responsible for the effect of voriconazole on mDA neurons. These findings suggest that voriconazole, and/or other azole CYP7B1 inhibitors may have implications in PD therapy development.

10.
Sci Rep ; 13(1): 17697, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848479

RESUMEN

Dopamine transmission has been implicated in motor and cognitive function. In Parkinson's disease (PD), dopamine replacement using the precursor drug L-DOPA is the predominant treatment approach, but long-term exposure leads to the onset of dyskinesias (LIDs). Chronic L-DOPA exposure has been associated with changes in gene expression and altered cortico-striatal plasticity. The aim of this research was to assess the functional consequence of long-term L-DOPA exposure on cognitive and motor function using a rodent model of PD. Across two independent experiments, we assessed the impact of chronic L-DOPA exposure, or a control D2R agonist, on motor and cognitive function in intact and in hemi parkinsonian rats, in the absence of drug. Abnormal involuntary movements associated with LID were measured and brain tissues were subsequently harvested for immunohistochemical analysis. Exposure to chronic L-DOPA, but not the D2R agonist, impaired motor and cognitive function, when animals were tested in the absence of drug. A meta-analysis of the two experiments allowed further dissociation of L-DOPA -treated rats into those that developed LIDs (dyskinetic) and those that did not develop LIDs (non-dyskinetic). This analysis revealed impaired cognitive and motor performance were evident only in dyskinetic, but not in non-dyskinetic, rats. These data reveal a functional consequence of the altered plasticity associated with LID onset and have implications for understanding symptom progression in the clinic.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Ratas , Animales , Levodopa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Ratas Sprague-Dawley , Oxidopamina/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Cuerpo Estriado/metabolismo , Cognición , Modelos Animales de Enfermedad
11.
Stem Cells Dev ; 32(13-14): 387-397, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37166357

RESUMEN

Transplantation of human induced pluripotent stem cell-derived dopaminergic (iPSC-DA) neurons is a promising therapeutic strategy for Parkinson's disease (PD). To assess optimal cell characteristics and reproducibility, we evaluated the efficacy of iPSC-DA neuron precursors from two individuals with sporadic PD by transplantation into a hemiparkinsonian rat model after differentiation for either 18 (d18) or 25 days (d25). We found similar graft size and dopamine (DA) neuron content in both groups, but only the d18 cells resulted in recovery of motor impairments. In contrast, we report that d25 grafts survived equally as well and produced grafts rich in tyrosine hydroxylase-positive neurons, but were incapable of alleviating any motor deficits. We identified the mechanism of action as the extent of neurite outgrowth into the host brain, with d18 grafts supporting significantly more neurite outgrowth than nonfunctional d25 grafts. RNAseq analysis of the cell preparation suggests that graft efficacy may be enhanced by repression of differentiation-associated genes by REST, defining the optimal predifferentiation state for transplantation. This study demonstrates for the first time that DA neuron grafts can survive well in vivo while completely lacking the capacity to induce recovery from motor dysfunction. In contrast to other recent studies, we demonstrate that neurite outgrowth is the key factor determining graft efficacy and our gene expression profiling revealed characteristics of the cells that may predict their efficacy. These data have implication for the generation of DA neuron grafts for clinical application.


Asunto(s)
Neuronas Dopaminérgicas , Células Madre Pluripotentes Inducidas , Humanos , Ratas , Animales , Transcriptoma , Reproducibilidad de los Resultados , Diferenciación Celular/fisiología , Proyección Neuronal
12.
EMBO Mol Med ; 15(11): e15984, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37792911

RESUMEN

Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5. In vitro administration of RB5 disrupts the preferential interaction of ERK1 MAP kinase with importinα1/KPNA2 over ERK2, facilitates ERK1/2 nuclear translocation, and enhances global ERK activity. Importantly, RB5 treatment in vivo promotes neuroprotection in mouse models of Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) disease, and enhances ERK signaling in a human cellular model of HD. Additionally, RB5-mediated potentiation of ERK nuclear signaling facilitates synaptic plasticity, enhances cognition in healthy rodents, and rescues cognitive impairments in AD and HD models. The reported molecular mechanism shared across multiple neurodegenerative disorders reveals a potential new therapeutic target approach based on the modulation of KPNA2-ERK1/2 interactions.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neuroprotección , Animales , Humanos , Ratones , alfa Carioferinas/farmacología , Cognición , Fosforilación , Transducción de Señal
13.
Neurobiol Learn Mem ; 98(1): 1-11, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22445898

RESUMEN

The neural circuitry underlying emotional learning and memory is known to involve both the amygdala and hippocampus. Both of these structures undergo anatomical and functional changes during the course of Alzheimer's disease. The present study used expression of the immediate early gene c-Fos to examine the effect of amyloid-induced synaptic pathology on neural activity in the hippocampus and amygdala immediately following Pavlovian fear conditioning. Tg2576 mice underwent cued fear conditioning and the regional interdependencies of c-Fos expression in the hippocampus and the amygdala were assessed using structural equation modelling. Tg2576 mice displayed normal acquisition of conditioned freezing to a punctate auditory cue paired with shock. However, the analysis of c-Fos expression indicated abnormal regional activity in the hippocampal dentate gyrus of Tg2576 mice. Structural equation modelling also supported the view that activity within the amygdala was independent of hippocampal activity in Tg2576 mice (unlike control mice) and regional interaction between the dentate gyrus and CA3 region was disrupted. The results provide novel insight into the effects of excess amyloid production on brain region interdependencies underpinning emotional learning.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Hipocampo/metabolismo , Red Nerviosa/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Amígdala del Cerebelo/fisiopatología , Animales , Conducta Animal/fisiología , Miedo/psicología , Hipocampo/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Actividad Motora/fisiología
14.
Int Rev Neurobiol ; 166: 159-189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36424091

RESUMEN

Cell therapeutics have entered into an exciting era, with first-in-person clinical trials underway for Parkinson's disease and novel cell therapies in development for other neurodegenerative diseases. In the hope of ensuring successful translation of these novel cell products to the clinic, a significant amount of preclinical work continues to be undertaken. Rodent models of neural transplantation are required to thoroughly assess the survival, safety and efficacy of novel therapeutics. It is critical to produce robust and reliable preclinical data, in order to increase the likelihood of clinical success. As a result, significant effort has been driven into generating ever more relevant model systems, from genetically modified disease models to mice with humanized immune systems. Despite this, several challenges remain in the quest to assess human cells in the rodent brain long-term. Here, with a focus on models of Parkinson's and Huntington's disease, we discuss key considerations for choosing an appropriate rodent model for neural transplantation. We also consider the challenges associated with long-term survival and assessment of functional efficacy in these models, as well as the need to consider the clinical relevance of the model. While the choice of model will be dependent on the scientific question, by considering the caveats associated with each model, we identify opportunities to optimize the preclinical assessment and generate reliable data on our novel cell therapeutics.


Asunto(s)
Enfermedad de Huntington , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Huntington/terapia , Enfermedad de Parkinson/terapia , Modelos Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Modelos Biológicos
15.
Dis Model Mech ; 15(10)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165848

RESUMEN

First-in-human clinical trials have commenced to test the safety and efficacy of cell therapies for people with Parkinson's disease (PD). Proof of concept that this neural repair strategy is efficacious is based on decades of preclinical studies and clinical trials using primary foetal cells, as well as a significant literature exploring more novel stem cell-derived products. Although several measures of efficacy have been explored, including the successful in vitro differentiation of stem cells to dopamine neurons and consistent alleviation of motor dysfunction in rodent models, many unknowns still remain regarding the long-term clinical implications of this treatment strategy. Here, we consider some of these outstanding questions, including our understanding of the interaction between anti-Parkinsonian medication and the neural transplant, the impact of the cell therapy on cognitive or neuropsychiatric symptoms of PD, the role of neuroinflammation in the therapeutic process and the development of graft-induced dyskinesias. We identify questions that are currently pertinent to the field that require further exploration, and pave the way for a more holistic understanding of this neural repair strategy for treatment of PD.


Asunto(s)
Enfermedad de Parkinson , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Neuronas Dopaminérgicas , Humanos
16.
Int Rev Neurobiol ; 166: 1-48, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36424090

RESUMEN

Huntington's disease (HD) is a hereditary, neurodegenerative disorder characterized by a triad of symptoms: motor, cognitive and psychiatric. HD is caused by a genetic mutation, expansion of the CAG repeat in the huntingtin gene, which results in loss of medium spiny neurons (MSNs) of the striatum. Cell replacement therapy (CRT) has emerged as a possible therapy for HD, aiming to replace those cells lost to the disease process and alleviate its symptoms. Initial pre-clinical studies used primary fetal striatal cells to provide proof-of-principal that CRT can bring about functional recovery on some behavioral tasks following transplantation into HD models. Alternative donor cell sources are required if CRT is to become a viable therapeutic option and human pluripotent stem cell (hPSC) sources, which have undergone differentiation toward the MSNs lost to the disease process, have proved to be strong candidates. The focus of this chapter is to review work conducted on the functional assessment of animals following transplantation of hPSC-derived MSNs. We discuss different ways that graft function has been assessed, and the results that have been achieved to date. In addition, this chapter presents and discusses challenges that remain in this field.


Asunto(s)
Enfermedad de Huntington , Células Madre Pluripotentes , Animales , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/cirugía , Neuronas , Tratamiento Basado en Trasplante de Células y Tejidos , Cuerpo Estriado
17.
Biochem Biophys Res Commun ; 415(4): 656-61, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22079091

RESUMEN

Amyloid-ß (Aß) is cleaved from amyloid precursor protein (APP) predominantly after APP has trafficked through the secretory pathway and then become re-internalised by endocytosis. Clathrin-mediated and, more recently, clathrin-independent endocytosis have both been implicated in this process. Furthermore, endocytic abnormalities have been identified in cases of Alzheimer's disease (AD), however, the relevance of these changes to the aetiology of the disease remains unclear. We therefore examined the expression of proteins related to these endocytic processes in the cortex of Tg2576 mice that overexpress the Swedish mutation in APP, and consequently overexpress Aß, to determine if there were any changes in their associated pathways. We identified significant increases in the levels of clathrin, dynamin and PICALM, all proteins intimately involved with the clathrin-mediated endocytic pathway, in the transgenic animals. However, levels of proteins associated with flotillin or caveolin-mediated endocytic pathways remained unchanged. These results emphasise the importance of clathrin-mediated endocytosis in the aetiology of AD and reinforce the results of the recent GWAS studies that identified genes for clathrin-mediated endocytosis as susceptibility genes for AD. Such studies in transgenic mice will allow us to learn more about the role of clathrin-mediated endocytosis in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Corteza Cerebral/metabolismo , Clatrina/metabolismo , Endocitosis/genética , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Clatrina/genética , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Ratones , Ratones Transgénicos , Regulación hacia Arriba
18.
Neuronal Signal ; 5(4): NS20210019, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34956650

RESUMEN

Early CNS transplantation studies used foetal derived cell products to provide a foundation of evidence for functional recovery in preclinical studies and early clinical trials. However, it was soon recognised that the practical limitations of foetal tissue make it unsuitable for widespread clinical use. Considerable effort has since been directed towards producing target cell phenotypes from pluripotent stem cells (PSCs) instead, and there now exist several publications detailing the differentiation and characterisation of PSC-derived products relevant for transplantation in Huntington's disease (HD). In light of this progress, we ask if foetal tissue transplantation continues to be justified in HD research. We argue that (i) the extent to which accurately differentiated target cells can presently be produced from PSCs is still unclear, currently making them undesirable for studying wider CNS transplantation issues; (ii) foetal derived cells remain a valuable tool in preclinical research for advancing our understanding of which products produce functional striatal grafts and as a reference to further improve PSC-derived products; and (iii) until PSC-derived products are ready for human trials, it is important to continue using foetal cells to gather clinical evidence that transplantation is a viable option in HD and to use this opportunity to optimise practical parameters (such as trial design, clinical practices, and delivery strategies) to pave the way for future PSC-derived products.

20.
Methods Mol Biol ; 1780: 209-220, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29856021

RESUMEN

In Huntington's disease (HD), the medium spiny projection neurons of the neostriatum degenerate early in the course of the disease. While genetic mutant models of HD provide an excellent resource for studying the molecular and cellular effects of the inherited polyQ huntingtin mutation, they do not typically present with overt atrophy of the basal ganglia, despite this being a major pathophysiological hallmark of the disease. By contrast, excitotoxic lesion models, which use quinolinic acid to specifically target the striatal projection neurons, are employed to study the functional consequences of striatal atrophy and to investigate potential therapeutic interventions that target the neuronal degeneration. This chapter provides a detailed guide to the generation of excitotoxic lesion models of HD in rats.


Asunto(s)
Enfermedad de Huntington/patología , Microinyecciones/métodos , Neostriado/patología , Neurotoxinas/administración & dosificación , Técnicas Estereotáxicas/instrumentación , Animales , Atrofia/inducido químicamente , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/inducido químicamente , Interneuronas/efectos de los fármacos , Interneuronas/patología , Ratones , Microinyecciones/instrumentación , Neostriado/citología , Neostriado/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuritas/patología , Neurotoxinas/toxicidad , Ácido Quinolínico/administración & dosificación , Ácido Quinolínico/toxicidad , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA