Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Neuroanat ; 12: 23, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636669

RESUMEN

The Reprimo (RPRM) family is composed of highly conserved single-exon genes. The expression pattern of this gene family has been recently described during zebrafish (Danio rerio) embryogenesis, and primarily locates in the nervous system. Its most characterized member, RPRM, which duplicated to give rise rprma and rprmb in the fish lineage, is known to act as a tumor-suppressor gene in mammalian models. Here, we describe in detail the spatiotemporal expression of three rprm genes (rprma, rprmb, and rprml) within distinct anatomical structures in the developing peripheral and central nervous system. In the zebrafish, rprma mRNA is expressed in the olfactory placodes (OP) and olfactory epithelium (OE), rprmb is observed in the tectum opticum (TeO) and trigeminal ganglion (Tg), whereas rprml is found primarily in the telencephalon (Tel). At protein level, RPRM is present in a subset of cells in the OP, and neurons in the OE, TeO, hindbrain and sensory peripheral structures. Most importantly, the expression of RPRM has been conserved between teleosts and mammals. Thus, we provide a reference dataset describing the expression patterns of RPRM gene products during zebrafish and mouse development as a first step to approach the physiological role of the RPRM gene family.

2.
Brain Struct Funct ; 222(2): 1087-1092, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27155991

RESUMEN

Brain asymmetry is a conserved feature in vertebrates. The dorsal diencephalic habenular complex shows conspicuous structural and functional asymmetries in a wide range of species, yet it is unclear if this condition is also present in humans. Addressing this possibility becomes relevant in light of recent findings presenting the habenula as a novel target for therapeutic intervention of affective disorders through deep brain stimulation. Here we performed volumetric analyses in postmortem diencephalic samples of male and female individuals, and report for the first time, the presence of directional asymmetries in the volume of the human habenula. The habenular volume is larger on the left side in both genders, a feature that can be explained by an enlargement of the left lateral habenula compared to the right counterpart. In contrast, the volume of the medial habenula shows no left-right directional bias in either gender. It is remarkable that asymmetries involve the lateral habenula, which in humans is particularly enlarged compared to other vertebrates and plays relevant roles in aversive processing and aversively motivated learning. Our findings of structural asymmetries in the human habenula are consistent with recent observations of lateral bias in activation, metabolism and damage of the human habenula, highlighting a potential role of habenular laterality in contexts of health and illness.


Asunto(s)
Lateralidad Funcional , Habénula/anatomía & histología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Caracteres Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA