Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
FASEB J ; : fj201800634R, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932868

RESUMEN

Hunger-sensing agouti-related peptide (AgRP) neurons ensure survival by adapting metabolism and behavior to low caloric environments. This adaption is accomplished by consolidating food intake, suppressing energy expenditure, and maximizing fat storage (nutrient partitioning) for energy preservation. The intracellular mechanisms responsible are unknown. Here we report that AgRP carnitine acetyltransferase (Crat) knockout (KO) mice exhibited increased fatty acid utilization and greater fat loss after 9 d of calorie restriction (CR). No differences were seen in mice with ad libitum food intake. Eleven days ad libitum feeding after CR resulted in greater food intake, rebound weight gain, and adiposity in AgRP Crat KO mice compared with wild-type controls, as KO mice act to restore pre-CR fat mass. Collectively, this study highlights the importance of Crat in AgRP neurons to regulate nutrient partitioning and fat mass during chronically reduced caloric intake. The increased food intake, body weight gain, and adiposity in KO mice after CR also highlights the detrimental and persistent metabolic consequence of impaired substrate utilization associated with CR. This finding may have significant implications for postdieting weight management in patients with metabolic diseases.-Reichenbach, A., Stark, R., Mequinion, M., Lockie, S. H., Lemus, M. B., Mynatt, R. L., Luquet, S., Andrews, Z. B. Carnitine acetyltransferase (Crat) in hunger-sensing AgRP neurons permits adaptation to calorie restriction.

2.
J Neurosci ; 36(10): 3049-63, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26961958

RESUMEN

Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKß1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Restricción Calórica , Ghrelina/metabolismo , Intoxicación por MPTP/patología , Intoxicación por MPTP/prevención & control , Enfermedad de Parkinson/fisiopatología , Transducción de Señal/fisiología , Proteínas Quinasas Activadas por AMP/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Ghrelina/genética , Ghrelina/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Intoxicación por MPTP/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tirosina 3-Monooxigenasa/metabolismo
3.
Endocrinology ; 159(6): 2473-2483, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29697769

RESUMEN

Behavioral adaptation to periods of varying food availability is crucial for survival, and agouti-related protein (AgRP) neurons have been associated with entrainment to temporal restricted feeding. We have shown that carnitine acetyltransferase (Crat) in AgRP neurons enables metabolic flexibility and appropriate nutrient partitioning. In this study, by restricting food availability to 3 h/d during the light phase, we examined whether Crat is a component of a food-entrainable oscillator (FEO) that helps link behavior to food availability. AgRP Crat knockout (KO) mice consumed less food and regained less body weight but maintained blood glucose levels during the 25-day restricted feeding protocol. Importantly, we observed no difference in meal latency, food anticipatory activity (FAA), or brown adipose tissue temperature during the first 13 days of restricted feeding. However, as the restricted feeding paradigm progressed, we noticed an increased FAA in AgRP Crat KO mice. The delayed increase in FAA, which developed during the last 12 days of restricted feeding, corresponded with elevated plasma levels of corticosterone and nonesterified fatty acids, indicating it resulted from greater energy debt incurred by KO mice over the course of the experiment. These experiments highlight the importance of Crat in AgRP neurons in regulating feeding behavior and body weight gain during restricted feeding but not in synchronizing behavior to food availability. Thus, Crat within AgRP neurons forms a component of the homeostatic response to restricted feeding but is not likely to be a molecular component of FEO.


Asunto(s)
Adaptación Fisiológica/genética , Proteína Relacionada con Agouti/metabolismo , Restricción Calórica , Carnitina O-Acetiltransferasa/fisiología , Conducta Alimentaria/fisiología , Homeostasis/genética , Neuronas/metabolismo , Animales , Carnitina O-Acetiltransferasa/genética , Carnitina O-Acetiltransferasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Condicionamiento Físico Animal/fisiología
4.
Cell Rep ; 22(7): 1745-1759, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29444428

RESUMEN

AgRP neurons control peripheral substrate utilization and nutrient partitioning during conditions of energy deficit and nutrient replenishment, although the molecular mechanism is unknown. We examined whether carnitine acetyltransferase (Crat) in AgRP neurons affects peripheral nutrient partitioning. Crat deletion in AgRP neurons reduced food intake and feeding behavior and increased glycerol supply to the liver during fasting, as a gluconeogenic substrate, which was mediated by changes to sympathetic output and peripheral fatty acid metabolism in the liver. Crat deletion in AgRP neurons increased peripheral fatty acid substrate utilization and attenuated the switch to glucose utilization after refeeding, indicating altered nutrient partitioning. Proteomic analysis in AgRP neurons shows that Crat regulates protein acetylation and metabolic processing. Collectively, our studies highlight that AgRP neurons require Crat to provide the metabolic flexibility to optimize nutrient partitioning and regulate peripheral substrate utilization, particularly during fasting and refeeding.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Carnitina O-Acetiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Animales , Colecistoquinina/administración & dosificación , Ingestión de Alimentos , Ayuno , Conducta Alimentaria , Eliminación de Gen , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Inyecciones Intraperitoneales , Inyecciones Intraventriculares , Insulina/administración & dosificación , Integrasas/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Noqueados , Proteómica , Reproducibilidad de los Resultados
5.
Endocrinology ; 158(7): 2179-2189, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368434

RESUMEN

Ghrelin plays a key role in appetite, energy homeostasis, and glucose regulation. Recent evidence suggests ghrelin suppresses inflammation in obesity; however, whether this is modulated by the acylated and/or des-acylated peptide is unclear. We used mice deficient in acylated ghrelin [ghrelin octanoyl-acyltransferase (GOAT) knockout (KO) mice], wild-type (WT) littermates, and C57BL/6 mice to examine the endogenous and exogenous effects of acyl and des-acyl ghrelin on inflammatory profiles under nonobese and obese conditions. We demonstrate that in the spleen, both ghrelin and GOAT are localized primarily in the red pulp. Importantly, in the thymus, ghrelin was predominantly localized to the medulla, whereas GOAT was found in the cortex, implying differing roles in T cell development. Acute exogenous treatment with acyl/des-acyl ghrelin suppressed macrophage numbers in spleen and thymus in obese mice, whereas only acyl ghrelin increased CD3+ T cells in the thymus in mice fed both chow and a high-fat-diet (HFD). Consistent with this result, macrophages were increased in the spleen of KO mice on a HFD. Whereas there was no difference in CD3+ T cells in the plasma, spleen, or thymus of WT vs KO mice, KO chow and HFD-fed mice displayed decreased leukocytes. Our results suggest that the acylation status affects the anti-inflammatory properties of ghrelin under chow and HFD conditions.


Asunto(s)
Aciltransferasas/fisiología , Ghrelina/fisiología , Inflamación/etiología , Obesidad/complicaciones , Aciltransferasas/genética , Animales , Dieta Alta en Grasa , Inflamación/genética , Inflamación/inmunología , Masculino , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/genética , Bazo/inmunología , Bazo/metabolismo , Linfocitos T/fisiología , Timo/inmunología , Timo/metabolismo
6.
PLoS One ; 11(7): e0159381, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27467571

RESUMEN

Metformin is a widely prescribed drug used to treat type-2 diabetes, although recent studies show it has wide ranging effects to treat other diseases. Animal and retrospective human studies indicate that Metformin treatment is neuroprotective in Parkinson's Disease (PD), although the neuroprotective mechanism is unknown, numerous studies suggest the beneficial effects on glucose homeostasis may be through AMPK activation. In this study we tested whether or not AMPK activation in dopamine neurons was required for the neuroprotective effects of Metformin in PD. We generated transgenic mice in which AMPK activity in dopamine neurons was ablated by removing AMPK beta 1 and beta 2 subunits from dopamine transporter expressing neurons. These AMPK WT and KO mice were then chronically exposed to Metformin in the drinking water then exposed to MPTP, the mouse model of PD. Chronic Metformin treatment significantly attenuated the MPTP-induced loss of Tyrosine Hydroxylase (TH) neuronal number and volume and TH protein concentration in the nigrostriatal pathway. Additionally, Metformin treatment prevented the MPTP-induced elevation of the DOPAC:DA ratio regardless of genotype. Metformin also prevented MPTP induced gliosis in the Substantia Nigra. These neuroprotective actions were independent of genotype and occurred in both AMPK WT and AMPK KO mice. Overall, our studies suggest that Metformin's neuroprotective effects are not due to AMPK activation in dopaminergic neurons and that more research is required to determine how metformin acts to restrict the development of PD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Hipoglucemiantes/farmacología , Metformina/farmacología , Neuronas/enzimología , Sustancia Negra/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/genética , Animales , Cuerpo Estriado/metabolismo , Activación Enzimática , Ratones , Ratones Noqueados , Sustancia Negra/metabolismo
7.
Endocrinology ; 157(10): 3946-3957, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27490185

RESUMEN

Ghrelin exists in two forms in circulation, acyl ghrelin and des-acyl ghrelin, both of which have distinct and fundamental roles in a variety of physiological functions. Despite this fact, a large proportion of papers simply measure and refer to plasma ghrelin without specifying the acylation status. It is therefore critical to assess and state the acylation status of plasma ghrelin in all studies. In this study we tested the effect of des-acyl ghrelin administration on the hypothalamic-pituitary-adrenal axis and on anxiety-like behavior of mice lacking endogenous ghrelin and in ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no endogenous acyl ghrelin and high endogenous des-acyl ghrelin. Our results show des-acyl ghrelin produces an anxiogenic effect under nonstressed conditions, but this switches to an anxiolytic effect under stress. Des-acyl ghrelin influences plasma corticosterone under both nonstressed and stressed conditions, although c-fos activation in the paraventricular nucleus of the hypothalamus is not different. By contrast, GOAT KO are anxious under both nonstressed and stressed conditions, although this is not due to corticosterone release from the adrenals but rather from impaired feedback actions in the paraventricular nucleus of the hypothalamus, as assessed by c-fos activation. These results reveal des-acyl ghrelin treatment and GOAT deletion have differential effects on the hypothalamic-pituitary-adrenal axis and anxiety-like behavior, suggesting that anxiety-like behavior in GOAT KO mice is not due to high plasma des-acyl ghrelin.


Asunto(s)
Aciltransferasas/metabolismo , Ansiedad/fisiopatología , Ghrelina/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Acilación , Aciltransferasas/genética , Animales , Ansiedad/psicología , Femenino , Masculino , Proteínas de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Endocrinology ; 156(5): 1701-13, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25742051

RESUMEN

The hypothalamic arcuate nucleus (ARC) contains 2 key neural populations, neuropeptide Y (NPY) and proopiomelanocortin (POMC), and, together with orexin neurons in the lateral hypothalamus, plays an integral role in energy homeostasis. However, no studies have examined total neuronal number and volume after high-fat diet (HFD) exposure using sophisticated stereology. We used design-based stereology to estimate NPY and POMC neuronal number and volume, as well as glial fibrillary acidic protein (astrocyte marker) and ionized calcium-binding adapter molecule 1 (microglia marker) cell number in the ARC; as well as orexin neurons in the lateral hypothalamus. Stereological analysis indicated approximately 8000 NPY and approximately 9000 POMC neurons in the ARC, and approximately 7500 orexin neurons in the lateral hypothalamus. HFD exposure did not affect total neuronal number in any population. However, HFD significantly increased average NPY cell volume and affected NPY and POMC cell volume distribution. HFD reduced orexin cell volume but had a bimodal effect on volume distribution with increased cells at relatively small volumes and decreased cells with relatively large volumes. ARC glial fibrillary acidic protein cells increased after 2 months on a HFD, although no significant difference after 6 months on chow diet or HFD was observed. No differences in ARC ionized calcium-binding adapter molecule 1 cell number were observed in any group. Thus, HFD affects ARC NPY or POMC neuronal cell volume number not cell number. Our results demonstrate the importance of stereology to perform robust unbiased analysis of cell number and volume. These data should be an empirical baseline reference to which future studies are compared.


Asunto(s)
Núcleo Arqueado del Hipotálamo/citología , Astrocitos/citología , Tamaño de la Célula , Microglía/citología , Neuronas/citología , Obesidad , Animales , Astrocitos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Dieta Alta en Grasa , Proteína Ácida Fibrilar de la Glía , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Proteínas de Microfilamentos/metabolismo , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropéptido Y/metabolismo , Neuropéptidos/metabolismo , Orexinas , Proopiomelanocortina/metabolismo
9.
Endocrinology ; 156(1): 280-90, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25322462

RESUMEN

The ghrelin-related peptides, acylated ghrelin, des-acylated ghrelin, and obestatin, are novel gastrointestinal hormones. We firstly investigated whether the ghrelin gene, ghrelin O-acyltransferase, and the ghrelin receptor (GH secretagogue receptor 1a [GHSR1a]) are expressed in mouse cerebral arteries. Secondly, we assessed the cerebrovascular actions of ghrelin-related peptides by examining their effects on vasodilator nitric oxide (NO) and superoxide production. Using RT-PCR, we found the ghrelin gene and ghrelin O-acyltransferase to be expressed at negligible levels in cerebral arteries from male wild-type mice. mRNA expression of GHSR1a was also found to be low in cerebral arteries, and GHSR protein was undetectable in GHSR-enhanced green fluorescent protein mice. We next found that exogenous acylated ghrelin had no effect on the tone of perfused cerebral arteries or superoxide production. By contrast, exogenous des-acylated ghrelin or obestatin elicited powerful vasodilator responses (EC50 < 10 pmol/L) that were abolished by the NO synthase inhibitor N(ω)-nitro-L-arginine methyl ester. Furthermore, exogenous des-acylated ghrelin suppressed superoxide production in cerebral arteries. Consistent with our GHSR expression data, vasodilator effects of des-acylated ghrelin or obestatin were sustained in the presence of YIL-781 (GHSR1a antagonist) and in arteries from Ghsr-deficient mice. Using ghrelin-deficient (Ghrl(-/-)) mice, we also found that endogenous production of ghrelin-related peptides regulates NO bioactivity and superoxide levels in the cerebral circulation. Specifically, we show that NO bioactivity was markedly reduced in Ghrl(-/-) vs wild-type mice, and superoxide levels were elevated. These findings reveal protective actions of exogenous and endogenous ghrelin-related peptides in the cerebral circulation and show the existence of a novel ghrelin receptor(s) in the cerebral endothelium.


Asunto(s)
Arterias Cerebrales/efectos de los fármacos , Cerebro/irrigación sanguínea , Ghrelina/análogos & derivados , Ghrelina/farmacología , Receptores de Ghrelina/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Piperidinas/farmacología , Quinazolinonas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Ghrelina/antagonistas & inhibidores , Receptores de Ghrelina/genética , Superóxidos
10.
Endocrinology ; 155(3): 840-53, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24424063

RESUMEN

In this study we examined fasted and refed cfos activation in cortical, brainstem, and hypothalamic brain regions associated with appetite regulation. We examined a number of time points during refeeding to gain insight into the temporal pattern of neuronal activation and changes in endocrine parameters associated with fasting and refeeding. In response to refeeding, blood glucose and plasma insulin returned to basal levels within 30 minutes, whereas plasma nonesterified fatty acids and leptin returned to basal levels after 1 and 2 hours, respectively. Within the hypothalamic arcuate nucleus (ARC), fasting increased cfos activation in ∼25% of neuropeptide Y neurons, which was terminated 1 hour after refeeding. Fasting had no effect on cfos activation in pro-opiomelanocortin neurons; however, 1 and 2 hours of refeeding significantly activated ∼20% of ARC pro-opiomelanocortin neurons. Acute refeeding (30, 60, and 120 minutes), but not fasting, increased cfos activation in the nucleus accumbens, the cingulate cortex (but not the insular cortex), the medial and lateral parabrachial nucleus, the nucleus of the solitary tract, the area postrema, the dorsal raphe, and the ventromedial nucleus of the hypothalamus. After 6 hours of refeeding, cfos activity was reduced in the majority of these regions compared with that at earlier time points. Our data indicate that acute refeeding, rather than long-term fasting, activates cortical, brainstem, and hypothalamic neural circuits associated with appetite regulation and reward processing. Although the hypothalamic ARC remains a critical sensory node detecting changes in the metabolic state and feedback during fasting and acute refeeding, our results also reveal the temporal pattern in cfos activation in cortical and brainstem areas implicated in the control of appetite and body weight regulation.


Asunto(s)
Tronco Encefálico/metabolismo , Corteza Cerebral/metabolismo , Ingestión de Alimentos/fisiología , Privación de Alimentos , Hipotálamo/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Regulación del Apetito/fisiología , Núcleo Arqueado del Hipotálamo/metabolismo , Glucemia/metabolismo , Peso Corporal , Ácidos Grasos/sangre , Regulación de la Expresión Génica , Giro del Cíngulo/metabolismo , Insulina/sangre , Leptina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Proopiomelanocortina/metabolismo , Núcleos del Rafe/metabolismo , Núcleo Solitario/metabolismo , Factores de Tiempo , Núcleo Hipotalámico Ventromedial/metabolismo
11.
Endocrinology ; 155(7): 2411-22, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24742194

RESUMEN

High-fat diet (HFD) feeding causes ghrelin resistance in arcuate neuropeptide Y (NPY)/Agouti-related peptide neurons. In the current study, we investigated the time course over which this occurs and the mechanisms responsible for ghrelin resistance. After 3 weeks of HFD feeding, neither peripheral nor central ghrelin increased food intake and or activated NPY neurons as demonstrated by a lack of Fos immunoreactivity or whole-cell patch-clamp electrophysiology. Pair-feeding studies that matched HFD calorie intake with chow calorie intake show that HFD exposure does not cause ghrelin resistance independent of body weight gain. We observed increased plasma leptin in mice fed a HFD for 3 weeks and show that leptin-deficient obese ob/ob mice are still ghrelin sensitive but become ghrelin resistant when central leptin is coadministered. Moreover, ob/ob mice fed a HFD for 3 weeks remain ghrelin sensitive, and the ability of ghrelin to induce action potential firing in NPY neurons was blocked by leptin. We also examined hypothalamic gliosis in mice fed a chow diet or HFD, as well as in ob/ob mice fed a chow diet or HFD and lean controls. HFD-fed mice exhibited increased glial fibrillary acidic protein-positive cells compared with chow-fed mice, suggesting that hypothalamic gliosis may underlie ghrelin resistance. However, we also observed an increase in hypothalamic gliosis in ob/ob mice fed a HFD compared with chow-fed ob/ob and lean control mice. Because ob/ob mice fed a HFD remain ghrelin sensitive, our results suggest that hypothalamic gliosis does not underlie ghrelin resistance. Further, pair-feeding a HFD to match the calorie intake of chow-fed controls did not increase body weight gain or cause central ghrelin resistance; thus, our evidence suggests that diet-induced hyperleptinemia, rather than diet-induced hypothalamic gliosis or HFD exposure, causes ghrelin resistance.


Asunto(s)
Resistencia a Medicamentos/fisiología , Ghrelina/farmacología , Leptina/sangre , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/fisiología , Dieta Alta en Grasa/efectos adversos , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/etiología , Gliosis/fisiopatología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patología , Hipotálamo/fisiopatología , Inmunohistoquímica , Técnicas In Vitro , Leptina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Obesidad/sangre , Obesidad/etiología , Obesidad/fisiopatología
12.
Endocrinology ; 154(2): 709-17, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23307790

RESUMEN

Twelve weeks of high-fat diet feeding causes ghrelin resistance in arcuate neuropeptide Y (NPY)/agouti-related protein (AgRP) neurons. In the current study, we investigated whether diet-induced weight loss could restore NPY/AgRP neuronal responsiveness to ghrelin and whether ghrelin mediates rebound weight gain after calorie-restricted (CR) weight loss. Diet-induced obese (DIO) mice were allocated to one of two dietary interventions until they reached the weight of age-matched lean controls. DIO mice received chow diet ad libitum or chow diet with 40% CR. Chow-fed and high-fat-fed mice served as controls. Both dietary interventions normalized body weight, glucose tolerance, and plasma insulin. We show that diet-induced weight loss with CR increases total plasma ghrelin, restores ghrelin sensitivity, and increases hypothalamic NPY and AgRP mRNA expression. We propose that long-term DIO creates a higher body weight set-point and that weight loss induced by CR, as seen in the high-fat CR group, provokes the brain to protect the new higher set-point. This adaptation to weight loss likely contributes to rebound weight gain by increasing peripheral ghrelin concentrations and restoring the function of ghrelin-responsive neuronal populations in the hypothalamic arcuate nucleus. Indeed, we also show that DIO ghrelin-knockout mice exhibit reduced body weight regain after CR weight loss compared with ghrelin wild-type mice, suggesting ghrelin mediates rebound weight gain after CR weight loss.


Asunto(s)
Dieta Alta en Grasa , Dieta Reductora , Ghrelina/farmacología , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Restricción Calórica , Resistencia a Medicamentos , Ghrelina/sangre , Masculino , Ratones , Neuropéptido Y/metabolismo , Obesidad/dietoterapia , Obesidad/metabolismo , ARN Mensajero/metabolismo , Aumento de Peso , Pérdida de Peso
13.
Endocrinology ; 151(10): 4745-55, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20826561

RESUMEN

Circulating ghrelin is decreased in obesity, and peripheral ghrelin does not induce food intake in obese mice. We investigated whether ghrelin resistance was a centrally mediated phenomenon involving dysregulated neuropeptide Y (NPY) and agouti-related peptide (AgRP) circuits. We show that diet-induced obesity (DIO) (12 wk) suppresses the neuroendocrine ghrelin system by decreasing acylated and total plasma ghrelin, decreasing ghrelin and Goat mRNA in the stomach, and decreasing expression of hypothalamic GHSR. Peripheral (ip) or central (intracerebroventricular) ghrelin injection was able to induce food intake and arcuate nucleus Fos immunoreactivity in chow-fed but not high-fat diet-fed mice. DIO decreased expression of Npy and Agrp mRNA, and central ghrelin was unable to promote expression of these genes. Ghrelin did not induce AgRP or NPY secretion in hypothalamic explants from DIO mice. Injection of NPY intracerebroventricularly increased food intake in both chow-fed and high-fat diet-fed mice, indicating that downstream NPY/AgRP neural targets are intact and that defective NPY/AgRP function is a primary cause of ghrelin resistance. Ghrelin resistance in DIO is not confined to the NPY/AgRP neurons, because ghrelin did not stimulate growth hormone secretion in DIO mice. Collectively, our data suggests that DIO causes ghrelin resistance by reducing NPY/AgRP responsiveness to plasma ghrelin and suppressing the neuroendocrine ghrelin axis to limit further food intake. Ghrelin has a number of functions in the brain aside from appetite control, including cognitive function, mood regulation, and protecting against neurodegenerative diseases. Thus, central ghrelin resistance may potentiate obesity-related cognitive decline, and restoring ghrelin sensitivity may provide therapeutic outcomes for maintaining healthy aging.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Resistencia a Medicamentos , Ghrelina/metabolismo , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Animales , Cognición/efectos de los fármacos , Cognición/fisiología , Dieta Aterogénica , Resistencia a Medicamentos/fisiología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Ghrelina/sangre , Ghrelina/genética , Ghrelina/farmacología , Cabras , Hormona del Crecimiento/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Neuronas/metabolismo , Obesidad/sangre , Obesidad/complicaciones , Obesidad/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA