Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(33): e2311267, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38534041

RESUMEN

The controllable construction of complex metal-organic coordination polymers (CPs) merits untold scientific and technological potential, yet remains a grand challenge of one-step construction and modulating simultaneously valence states of metals and topological morphology. Here, a thiocyanuric acid (TCA)-triggered strategy is presented to one-step rapid synthesis a double-crystalline Prussian blue analogue hetero-superstructure (PBA-hs) that comprises a Co3[Fe(CN)6]2 cube overcoated with a KCo[Fe(CN)6] shell, followed by eight self-assembled small cubes on vertices. Unlike common directing surfactants, TCA not only acts as a trigger for the fast growth of KCo[Fe(CN)6] on the Co3[Fe(CN)6]2 phase resulting in a PBA-on-PBA hetero-superstructure, but also serves as a flange-like bridge between them. By combining experiments with simulations, a deprotonation-induced electron transfer (DIET) mechanism is proposed for formation of second phase in PBA-hs, differing from thermally and photo-induced electron transfer processes. To prove utility, the calcined PBA-hs exhibits enhanced oxygen evolution reaction performance. This work provides a new method to design of novel CPs for enriching chemistry and material science. This work offers a practical approach to design novel CPs for enriching chemistry and material science.

2.
J Phys Chem A ; 125(14): 2905-2912, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33822612

RESUMEN

A recently synthesized novel molecule (named CAT-1) exhibits intriguing near-infrared (NIR) thermally activated delayed fluorescence (TADF) close to 1000 nm wavelength; however, the mechanism behind these intrinsic properties is not fully understood. Herein, we unravel that the fluorescence emission spectrum with a broad wavelength range (770-950 nm) of CAT-1 is primarily induced by hydrogen bond steric hindrance based on density functional theory and Marcus theory. It is found that the hydrogen bond steric hindrance plays a critical role in inhibiting the twist of the configuration of different excited states, which leads to the minor driving force for fast electron trapping between the excited states, as well as small internal reorganization energy caused by less changed geometric configuration. Furthermore, such steric hindrance will cause a more distorted plane, resulting in a less favorable electron delocalization. A faster reverse intersystem crossing (RISC) rate is then obtained due to the nearly unchanged conformation between excited states caused by steric hindrance, although the spin-orbit coupling is small. Consequently, the NIR TADF with a longer wavelength can be emitted in CAT-1. This work shows that the hydrogen bond steric hindrance can fine-tune the electronic interactions of the donor and acceptor units to control the TADF.

3.
J Phys Chem Lett ; 15(9): 2428-2435, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38394780

RESUMEN

Catalytic performance of single-atom catalysts (SACs) relies fundamentally on the electronic nature and local coordination environment of the active site. Here, based on a machine-learning (ML)-aided density functional theory (DFT) method, we reveal that the intrinsic dipole in Janus materials has a significant impact on the catalytic activity of SACs, using 2D γ-phosphorus carbide (γ-PC) as a model system. Specifically, a local dipole around the active site is a key degree to tune the catalytic activity and can be used as an important descriptor with a high feature importance of 17.1% in predicting the difference of adsorption free energy (ΔGO* - ΔGOH*) to assess the activity of the oxygen evolution reaction. As a result, the catalytic performance of SACs can be tuned by an intrinsic dipole, in stark contrast to those external stimuli strategies previously used. These results suggest that dipole engineering and the revolutionary DFT-ML hybrid scheme are novel approaches for designing high-performance catalysts.

4.
Sci Rep ; 11(1): 21871, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750490

RESUMEN

Derived from the most abundant natural polymer, cellulose nanocrystal materials have attracted attention in recent decades due to their chemical and mechanical properties. However, still unclear is the influence of different exposed facets of the cellulose nanocrystals on the physicochemical properties. Herein, we first designed cellulose II nanocrystals with different exposed facets, the hydroxymethyl conformations distribution, hydrogen bond (HB) analysis, as well as the relative structural stability of these models (including crystal facets {A, B, O} and Type-A models vary in size) are theoretically investigated. The results reveal that the HB network of terminal anhydroglucose depends on the adjacent chain's contact sites in nanocrystals exposed with different facets. Compared to nanocrystals exposed with inclined facet, these exposed with flat facet tend to be the most stable. Therefore, the strategy of tuning exposed crystal facets will guide the design of novel cellulose nanocrystals with various physicochemical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA