RESUMEN
Retinal diseases are a rising concern as major causes of blindness in an aging society; therapeutic options are limited, and the precise pathogenesis of these diseases remains largely unknown. Intraocular drug delivery and nanomedicines offering targeted, sustained, and controllable delivery are the most challenging and popular topics in ocular drug development and toxicological evaluation. Retinal organoids (ROs) and organoid-on-a-chip (ROoC) are both emerging as promising in-vitro models to faithfully recapitulate human eyes for retinal research in the replacement of experimental animals and primary cells. In this study, we review the generation and application of ROs resembling the human retina in cell subtypes and laminated structures and introduce the emerging engineered ROoC as a technological opportunity to address critical issues. On-chip vascularization, perfusion, and close inter-tissue interactions recreate physiological environments in vitro, whilst integrating with biosensors facilitates real-time analysis and monitoring during organogenesis of the retina representing engineering efforts in ROoC models. We also emphasize that ROs and ROoCs hold the potential for applications in modeling intraocular drug delivery in vitro and developing next-generation retinal drug delivery strategies.
Asunto(s)
Organoides , Retina , Animales , Humanos , Especies Reactivas de Oxígeno , Dispositivos Laboratorio en un ChipRESUMEN
The neuromuscular junction (NMJ) is a peripheral synaptic connection between presynaptic motor neurons and postsynaptic skeletal muscle fibers that enables muscle contraction and voluntary motor movement. Many traumatic, neurodegenerative, and neuroimmunological diseases are classically believed to mainly affect either the neuronal or the muscle side of the NMJ, and treatment options are lacking. Recent advances in novel techniques have helped develop in vitro physiological and pathophysiological models of the NMJ as well as enable precise control and evaluation of its functions. This paper reviews the recent developments in in vitro NMJ models with 2D or 3D cultures, from organ-on-a-chip and organoids to biohybrid robotics. Related derivative techniques are introduced for functional analysis of the NMJ, such as the patch-clamp technique, microelectrode arrays, calcium imaging, and stimulus methods, particularly optogenetic-mediated light stimulation, microelectrode-mediated electrical stimulation, and biochemical stimulation. Finally, the applications of the in vitro NMJ models as disease models or for drug screening related to suitable neuromuscular diseases are summarized and their future development trends and challenges are discussed.