RESUMEN
Background Coronary artery calcium scoring (CACS) for coronary artery disease requires true noncontrast (TNC) CT alongside contrast-enhanced coronary CT angiography (CCTA). Photon-counting CT provides an algorithm (PureCalcium) for reconstructing virtual noncontrast images from CCTA specifically for CACS. Purpose To assess CACS differences based on PureCalcium images derived from contrast-enhanced photon-counting CCTA compared with TNC images and evaluate the impact of these differences on the clinically relevant classification of patients into plaque burden groups. Materials and Methods Photon-counting CCTA images acquired between August 2022 and May 2023 were retrospectively identified. Agatston scores were derived from both TNC and PureCalcium images and tested for differences with use of the Wilcoxon signed-rank test. The agreement was assessed with use of equivalence tests, Bland-Altman analysis, and intraclass correlation coefficient. Plaque burden groups were established based on Agatston scores, and agreement was evaluated using weighted Cohen kappa. The dose-length product was analyzed. Results Among 170 patients (mean age, 63 years ± 13 [SD]; 92 male), 111 had Agatston scores higher than 0. Median Agatston scores did not differ between TNC and PureCalcium images (4.8 [IQR, 0-84.4; range, 0.0-2151.8] vs 2.7 [IQR, 0-90.7; range, 0.0-2377.1]; P = .99), with strong correlation (intraclass correlation coefficient, 0.98 [95% CI: 0.97, 0.99]). The equivalence test was inconclusive, with a 95% CI of 0.90, 1.19. Bland-Altman analysis showed wide repeatability limits, indicating low agreement between the two scores. With use of the PureCalcium algorithm, 125 of 170 patients (74%) were correctly classified into plaque burden groups (excellent agreement, κ = 0.88). Patients without plaque burden were misclassified at higher than normal rates (P < .001). TNC image acquisition contributed a mean of 19.7% ± 8.8 of the radiation dose of the entire examination. Conclusion PureCalcium images show potential to replace TNC images for measuring Agatston scores, thereby reducing radiation dose in CCTA. There was strong correlation in calcium scores between TNC and PureCalcium, but limited agreement. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Sakuma in this issue.
Asunto(s)
Calcio , Angiografía por Tomografía Computarizada , Humanos , Masculino , Persona de Mediana Edad , Vasos Coronarios/diagnóstico por imagen , Estudios Retrospectivos , Angiografía Coronaria , Tomografía Computarizada por Rayos XRESUMEN
Background Contrast-unenhanced abdominal CT is the imaging standard for urinary calculi detection; however, studies comparing photon-counting detector (PCD) CT and energy-integrating detector (EID) CT dose-reduction potentials are lacking. Purpose To compare the radiation dose and image quality of optimized EID CT with those of an experimental PCD CT scan protocol including tin prefiltration in patients suspected of having urinary calculi. Materials and Methods This retrospective single-center study included patients who underwent unenhanced abdominal PCD CT or EID CT for suspected urinary caliculi between February 2022 and March 2023. Signal and noise measurements were performed at three anatomic levels (kidney, psoas, and obturator muscle). Nephrolithiasis and/or urolithiasis presence was independently assessed by three radiologists, and diagnostic confidence was recorded on a five-point scale (1, little to no confidence; 5, complete confidence). Reader agreement was determined by calculating Krippendorff α. Results A total of 507 patients (mean age, 51.7 years ± 17.4 [SD]; 317 male patients) were included (PCD CT group, 229 patients; EID CT group, 278 patients). Readers 1, 2, and 3 detected nephrolithiasis in 129, 127, and 129 patients and 94, 94, and 94 patients, whereas the readers detected urolithiasis in 113, 114, and 114 patients and 152, 153, and 152 patients in the PCD CT and EID CT groups, respectively. Regardless of protocol (PCD CT or EID CT) or calculus localization, near perfect interreader agreement was found (α ≥ 0.99; 95% CI: 0.99, 1). There was no evidence of a difference in reader confidence between PCD CT and EID CT (median confidence, 5; IQR, 5-5; P ≥ .57). The effective doses were 0.79 mSv (IQR, 0.63-0.99 mSv) and 1.39 mSv (IQR, 1.01-1.87 mSv) for PCD CT and EID CT, respectively. Despite the lower radiation exposure, the signal-to-noise ratios at the kidney, psoas, and obturator levels were 30%, 23%, and 17% higher, respectively, in the PCD CT group (P < .001). Conclusion Submillisievert abdominal PCD CT provided high-quality images for the diagnosis of urinary calculi; radiation exposure was reduced by 44% with a higher signal-to-noise ratio than with EID CT and with no evidence of a difference in reader confidence. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Nezami and Malayeri in this issue.
Asunto(s)
Tomografía Computarizada por Rayos X , Cálculos Urinarios , Humanos , Masculino , Femenino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Estudios Retrospectivos , Cálculos Urinarios/diagnóstico por imagen , Dosis de Radiación , Adulto , Fotones , Radiografía Abdominal/métodos , AncianoRESUMEN
Background CT deep learning image reconstruction (DLIR) improves image quality by reducing noise compared with adaptive statistical iterative reconstruction-V (ASIR-V). However, objective assessment of low-contrast lesion detectability is lacking. Purpose To investigate low-contrast detectability of hypoattenuating liver lesions on CT scans reconstructed with DLIR compared with CT scans reconstructed with ASIR-V in a patient and a phantom study. Materials and Methods This single-center retrospective study included patients undergoing portal venous phase abdominal CT between February and May 2021 and a low-contrast-resolution phantom scanned with the same protocol. Four reconstructions (ASIR-V at 40% strength [ASIR-V 40] and DLIR at three strengths) were generated. Five radiologists qualitatively assessed the images using the five-point Likert scale for image quality, lesion diagnostic confidence, conspicuity, and small lesion (≤1 cm) visibility. Up to two key lesions per patient, confirmed at histopathologic testing or at prior or follow-up imaging studies, were included. Lesion-to-background contrast-to-noise ratio was calculated. Interreader variability was analyzed. Intergroup qualitative and quantitative metrics were compared between DLIR and ASIR-V 40 using proportional odds logistic regression models. Results Eighty-six liver lesions (mean size, 15 mm ± 9.5 [SD]) in 50 patients (median age, 62 years [IQR, 57-73 years]; 27 [54%] female patients) were included. Differences were not detected for various qualitative low-contrast detectability metrics between ASIR-V 40 and DLIR (P > .05). Quantitatively, medium-strength DLIR and high-strength DLIR yielded higher lesion-to-background contrast-to-noise ratios than ASIR-V 40 (medium-strength DLIR vs ASIR-V 40: odds ratio [OR], 1.96 [95% CI: 1.65, 2.33]; high-strength DLIR vs ASIR-V 40: OR, 5.36 [95% CI: 3.68, 7.82]; P < .001). Low-contrast lesion attenuation was reduced by 2.8-3.6 HU with DLIR. Interreader agreement was moderate to very good for the qualitative metrics. Subgroup analysis based on lesion size of larger than 1 cm and 1 cm or smaller yielded similar results (P > .05). Qualitatively, phantom study results were similar to those in patients (P > .05). Conclusion The detectability of low-contrast liver lesions was similar on CT scans reconstructed with low-, medium-, and high-strength DLIR and ASIR-V 40 in both patient and phantom studies. Lesion-to-background contrast-to-noise ratios were higher for DLIR medium- and high-strength reconstructions compared with ASIR-V 40. © RSNA, 2024 Supplemental material is available for this article.
Asunto(s)
Aprendizaje Profundo , Neoplasias Hepáticas , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada por Rayos X , Humanos , Femenino , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Masculino , Persona de Mediana Edad , Neoplasias Hepáticas/diagnóstico por imagen , Anciano , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Hígado/diagnóstico por imagenRESUMEN
Background Errors in radiology reports may occur because of resident-to-attending discrepancies, speech recognition inaccuracies, and large workload. Large language models, such as GPT-4 (ChatGPT; OpenAI), may assist in generating reports. Purpose To assess effectiveness of GPT-4 in identifying common errors in radiology reports, focusing on performance, time, and cost-efficiency. Materials and Methods In this retrospective study, 200 radiology reports (radiography and cross-sectional imaging [CT and MRI]) were compiled between June 2023 and December 2023 at one institution. There were 150 errors from five common error categories (omission, insertion, spelling, side confusion, and other) intentionally inserted into 100 of the reports and used as the reference standard. Six radiologists (two senior radiologists, two attending physicians, and two residents) and GPT-4 were tasked with detecting these errors. Overall error detection performance, error detection in the five error categories, and reading time were assessed using Wald χ2 tests and paired-sample t tests. Results GPT-4 (detection rate, 82.7%;124 of 150; 95% CI: 75.8, 87.9) matched the average detection performance of radiologists independent of their experience (senior radiologists, 89.3% [134 of 150; 95% CI: 83.4, 93.3]; attending physicians, 80.0% [120 of 150; 95% CI: 72.9, 85.6]; residents, 80.0% [120 of 150; 95% CI: 72.9, 85.6]; P value range, .522-.99). One senior radiologist outperformed GPT-4 (detection rate, 94.7%; 142 of 150; 95% CI: 89.8, 97.3; P = .006). GPT-4 required less processing time per radiology report than the fastest human reader in the study (mean reading time, 3.5 seconds ± 0.5 [SD] vs 25.1 seconds ± 20.1, respectively; P < .001; Cohen d = -1.08). The use of GPT-4 resulted in lower mean correction cost per report than the most cost-efficient radiologist ($0.03 ± 0.01 vs $0.42 ± 0.41; P < .001; Cohen d = -1.12). Conclusion The radiology report error detection rate of GPT-4 was comparable with that of radiologists, potentially reducing work hours and cost. © RSNA, 2024 See also the editorial by Forman in this issue.
Asunto(s)
Radiología , Humanos , Estudios Retrospectivos , Radiografía , Radiólogos , ConfusiónRESUMEN
OBJECTIVE: To investigate the prognostic value of baseline health-related quality of life (HRQOL) for patients with intermediate-risk localized prostate cancer (IR-PCa) undergoing radical prostatectomy (RP). METHODS: 4780 patients with IR-PCa according to NCCN risk stratification were identified from a prospectively maintained database. All patients were treated with RP and had prospectively assessed baseline HRQOL. Main outcomes were oncologic endpoints metastasis-free survival (MFS); biochemical recurrence free survival (BRFS) and overall survival (OS). Multivariable Cox regression models assessed prognostic significance of baseline global health status (GHS) on survival outcomes. Harrell's discrimination C-index was applied to calculate the predictive accuracy of the model. Decision curve analysis (DCA) tested the clinical net benefit associated with adding the GHS domain to our multivariable model (p < 0.05). RESULTS: Median follow-up was 51 months. Multivariable analysis confirmed baseline GHS as an independent predictor for increased MFS (HR 0.976, 95%CI 0.96-0.99; p < 0.001), increased BRFS (HR 0.993, 95%CI 0.99-1.00; p = 0.027) and increased OS (HR 0.969, 95%CI 0.95-0.99; p = 0.002), indicating a relative risk reduction of 2.4% for MFS, 0.7% for BRFS and 3.1% for OS per 1-point increase of baseline GHS. Baseline HRQOL improved discrimination in predicting MFS, BRFS and OS. DCA revealed a net benefit over all threshold probabilities. CONCLUSIONS: We found baseline HRQOL to substantially improve risk stratification for the heterogeneous cohort of IR-PCa. Baseline HRQOL accurately predicts increased MFS, BRFS and OS. Our findings therefore support the role of preoperative HRQOL as an adjunct to established prognosticators for IR-PCa, potentially facilitating guidance of therapy.
Asunto(s)
Prostatectomía , Neoplasias de la Próstata , Calidad de Vida , Humanos , Masculino , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/psicología , Pronóstico , Medición de Riesgo , Persona de Mediana Edad , Anciano , Prostatectomía/métodos , Estudios Prospectivos , Tasa de SupervivenciaRESUMEN
OBJECTIVES: To investigate intra-patient variability of iodine concentration (IC) between three different dual-energy CT (DECT) platforms and to test different normalization approaches. METHODS: Forty-four patients who underwent portal venous phase abdominal DECT on a dual-source (dsDECT), a rapid kVp switching (rsDECT), and a dual-layer detector platform (dlDECT) during cancer follow-up were retrospectively included. IC in the liver, pancreas, and kidneys and different normalized ICs (NICPV:portal vein; NICAA:abdominal aorta; NICALL:overall iodine load) were compared between the three DECT scanners for each patient. A longitudinal mixed effects analysis was conducted to elucidate the effect of the scanner type, scan order, inter-scan time, and contrast media amount on normalized iodine concentration. RESULTS: Variability of IC was highest in the liver (dsDECT vs. dlDECT 28.96 (14.28-46.87) %, dsDECT vs. rsDECT 29.08 (16.59-62.55) %, rsDECT vs. dlDECT 22.85 (7.52-33.49) %), and lowest in the kidneys (dsDECT vs. dlDECT 15.76 (7.03-26.1) %, dsDECT vs. rsDECT 15.67 (8.86-25.56) %, rsDECT vs. dlDECT 10.92 (4.92-22.79) %). NICALL yielded the best reduction of IC variability throughout all tissues and inter-scanner comparisons, yet did not reduce the variability between dsDECT vs. dlDECT and rsDECT, respectively, in the liver. The scanner type remained a significant determinant for NICALL in the pancreas and the liver (F-values, 12.26 and 23.78; both, p < 0.0001). CONCLUSIONS: We found tissue-specific intra-patient variability of IC across different DECT scanner types. Normalization mitigated variability by reducing physiological fluctuations in iodine distribution. After normalization, the scanner type still had a significant effect on iodine variability in the pancreas and liver. CLINICAL RELEVANCE STATEMENT: Differences in iodine quantification between dual-energy CT scanners can partly be mitigated by normalization, yet remain relevant for specific tissues and inter-scanner comparisons, which should be taken into account at clinical routine imaging. KEY POINTS: ⢠Iodine concentration showed the least variability between scanner types in the kidneys (range 10.92-15.76%) and highest variability in the liver (range 22.85-29.08%). ⢠Normalizing tissue-specific iodine concentrations against the overall iodine load yielded the greatest reduction of variability between scanner types for 2/3 inter-scanner comparisons in the liver and for all (3/3) inter-scanner comparisons in the kidneys and pancreas, respectively. ⢠However, even after normalization, the dual-energy CT scanner type was found to be the factor significantly influencing variability of iodine concentration in the liver and pancreas.
Asunto(s)
Medios de Contraste , Yodo , Riñón , Hígado , Imagen Radiográfica por Emisión de Doble Fotón , Tomografía Computarizada por Rayos X , Humanos , Femenino , Masculino , Tomografía Computarizada por Rayos X/métodos , Persona de Mediana Edad , Estudios Retrospectivos , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Anciano , Riñón/diagnóstico por imagen , Hígado/diagnóstico por imagen , Páncreas/diagnóstico por imagen , AdultoRESUMEN
OBJECTIVES: To compare immune response evaluation criteria in solid tumors (iRECIST) and response evaluation criteria in solid tumors (RECIST) 1.1 for response assessment of immune checkpoint inhibitor (ICI) therapy in a real-world setting in patients with melanoma and non-small cell lung cancer (NSCLC). METHODS: Two-hundred fifty-two patients with melanoma and NSCLC who received CTLA-4 inhibitor ipilimumab or PD-1 inhibitors nivolumab or pembrolizumab and who underwent staging CT of the chest and abdomen were retrospectively included. Treatment response evaluation according to the RECIST 1.1 and iRECIST guidelines was performed for all patients. Response patterns, as well as overall response rate (ORR), disease control rate (DCR), and time to progression (TTP), were compared between RECIST 1.1 and iRECIST. RESULTS: Out of 143 patients with progressive disease (PD) according to RECIST 1.1, 48 (33.6%) did not attain confirmation of progression (iCPD) as per iRECIST and six patients who were treated beyond RECIST 1.1 progression reached PD at a later point in time in iRECIST, resulting in a significant difference in TTP between iRECIST and RECIST 1.1 (618.3 ± 626.9 days vs. 538.1 ± 617.9 days, respectively (p < 0.05)). The number of non-responders as per RECIST 1.1 was 79, whereas it was 60 when using iRECIST. ORR was 28.5% for RECIST 1.1 and 34.1% for iRECIST, and corresponding DCR of 67.4% for RECIST 1.1 and 74.6% for iRECIST. CONCLUSION: iRECIST was more suitable than RECIST 1.1 for capturing atypical response patterns to ICI therapy in patients with melanoma and NSCLC, resulting in differences in the assessment of treatment response. CLINICAL RELEVANCE STATEMENT: Compared to RECIST 1.1, iRECIST may improve patient care and treatment decisions for patients with NSCLC or melanoma who are treated with immune checkpoint inhibitors in clinical routine. KEY POINTS: RECIST 1.1 may incorrectly assess atypical treatment patterns to immune checkpoint inhibitors. iRECIST better captured atypical response patterns compared to RECIST 1.1. iRECIST was more suitable for assessing response to immune checkpoint inhibitors in non-small cell lung carcinoma and melanoma.
RESUMEN
OBJECTIVES: To perform a multi-reader comparison of multiparametric dual-energy computed tomography (DECT) images reconstructed with deep-learning image reconstruction (DLIR) and standard-of-care adaptive statistical iterative reconstruction-V (ASIR-V). METHODS: This retrospective study included 100 patients undergoing portal venous phase abdominal CT on a rapid kVp switching DECT scanner. Six reconstructed DECT sets (ASIR-V and DLIR, each at three strengths) were generated. Each DECT set included 65 keV monoenergetic, iodine, and virtual unenhanced (VUE) images. Using a Likert scale, three radiologists performed qualitative assessments for image noise, contrast, small structure visibility, sharpness, artifact, and image preference. Quantitative assessment was performed by measuring attenuation, image noise, and contrast-to-noise ratios (CNR). For the qualitative analysis, Gwet's AC2 estimates were used to assess agreement. RESULTS: DECT images reconstructed with DLIR yielded better qualitative scores than ASIR-V images except for artifacts, where both groups were comparable. DLIR-H images were rated higher than other reconstructions on all parameters (p-value < 0.05). On quantitative analysis, there was no significant difference in the attenuation values between ASIR-V and DLIR groups. DLIR images had higher CNR values for the liver and portal vein, and lower image noise, compared to ASIR-V images (p-value < 0.05). The subgroup analysis of patients with large body habitus (weight ≥ 90 kg) showed similar results to the study population. Inter-reader agreement was good-to-very good overall. CONCLUSION: Multiparametric post-processed DECT datasets reconstructed with DLIR were preferred over ASIR-V images with DLIR-H yielding the highest image quality scores. CLINICAL RELEVANCE STATEMENT: Deep-learning image reconstruction in dual-energy CT demonstrated significant benefits in qualitative and quantitative image metrics compared to adaptive statistical iterative reconstruction-V. KEY POINTS: Dual-energy CT (DECT) images reconstructed using deep-learning image reconstruction (DLIR) showed superior qualitative scores compared to adaptive statistical iterative reconstruction-V (ASIR-V) reconstructed images, except for artifacts where both reconstructions were rated comparable. While there was no significant difference in attenuation values between ASIR-V and DLIR groups, DLIR images showed higher contrast-to-noise ratios (CNR) for liver and portal vein, and lower image noise (p value < 0.05). Subgroup analysis of patients with large body habitus (weight ≥ 90 kg) yielded similar findings to the overall study population.
RESUMEN
BACKGROUND: Diagnosing myocarditis relies on multimodal data, including cardiovascular magnetic resonance (CMR), clinical symptoms, and blood values. The correct interpretation and integration of CMR findings require radiological expertise and knowledge. We aimed to investigate the performance of Generative Pre-trained Transformer 4 (GPT-4), a large language model, for report-based medical decision-making in the context of cardiac MRI for suspected myocarditis. METHODS: This retrospective study includes CMR reports from 396 patients with suspected myocarditis and eight centers, respectively. CMR reports and patient data including blood values, age, and further clinical information were provided to GPT-4 and radiologists with 1 (resident 1), 2 (resident 2), and 4 years (resident 3) of experience in CMR and knowledge of the 2018 Lake Louise Criteria. The final impression of the report regarding the radiological assessment of whether myocarditis is present or not was not provided. The performance of Generative pre-trained transformer 4 (GPT-4) and the human readers were compared to a consensus reading (two board-certified radiologists with 8 and 10 years of experience in CMR). Sensitivity, specificity, and accuracy were calculated. RESULTS: GPT-4 yielded an accuracy of 83%, sensitivity of 90%, and specificity of 78%, which was comparable to the physician with 1 year of experience (R1: 86%, 90%, 84%, p = 0.14) and lower than that of more experienced physicians (R2: 89%, 86%, 91%, p = 0.007 and R3: 91%, 85%, 96%, p < 0.001). GPT-4 and human readers showed a higher diagnostic performance when results from T1- and T2-mapping sequences were part of the reports, for residents 1 and 3 with statistical significance (p = 0.004 and p = 0.02, respectively). CONCLUSION: GPT-4 yielded good accuracy for diagnosing myocarditis based on CMR reports in a large dataset from multiple centers and therefore holds the potential to serve as a diagnostic decision-supporting tool in this capacity, particularly for less experienced physicians. Further studies are required to explore the full potential and elucidate educational aspects of the integration of large language models in medical decision-making.
RESUMEN
See also the editorial by Pourmorteza in this issue.
Asunto(s)
Adenoma , Fotones , Humanos , Fantasmas de Imagen , Tomografía Computarizada por Rayos XRESUMEN
Published under a CC BY 4.0 license.
Asunto(s)
Radiología , Humanos , Estudios de Factibilidad , RadiografíaRESUMEN
OBJECTIVES: To evaluate dual-layer dual-energy computed tomography (dlDECT)-derived pulmonary perfusion maps for differentiation between acute pulmonary embolism (PE) and chronic thromboembolic pulmonary hypertension (CTEPH). METHODS: This retrospective study included 131 patients (57 patients with acute PE, 52 CTEPH, 22 controls), who underwent CT pulmonary angiography on a dlDECT. Normal and malperfused areas of lung parenchyma were semiautomatically contoured using iodine density overlay (IDO) maps. First-order histogram features of normal and malperfused lung tissue were extracted. Iodine density (ID) was normalized to the mean pulmonary artery (MPA) and the left atrium (LA). Furthermore, morphological imaging features for both acute and chronic PE, as well as the combination of histogram and morphological imaging features, were evaluated. RESULTS: In acute PE, normal perfused lung areas showed a higher mean and peak iodine uptake normalized to the MPA than in CTEPH (both p < 0.001). After normalizing mean ID in perfusion defects to the LA, patients with acute PE had a reduced average perfusion (IDmean,LA) compared to both CTEPH patients and controls (p < 0.001 for both). IDmean,LA allowed for a differentiation between acute PE and CTEPH with moderate accuracy (AUC: 0.72, sensitivity 74%, specificity 64%), resulting in a PPV and NPV for CTEPH of 64% and 70%. Combining IDmean,LA in the malperfused areas with the diameter of the MPA (MPAdia) significantly increased its ability to differentiate between acute PE and CTEPH (sole MPAdia: AUC: 0.76, 95%-CI: 0.68-0.85 vs. MPAdia + 256.3 * IDmean,LA - 40.0: AUC: 0.82, 95%-CI: 0.74-0.90, p = 0.04). CONCLUSION: dlDECT enables quantification and characterization of pulmonary perfusion patterns in acute PE and CTEPH. Although these lack precision when used as a standalone criterion, when combined with morphological CT parameters, they hold potential to enhance differentiation between the two diseases. CLINICAL RELEVANCE STATEMENT: Differentiating between acute PE and CTEPH based on morphological CT parameters is challenging, often leading to a delay in CTEPH diagnosis. By revealing distinct pulmonary perfusion patterns in both entities, dlDECT may facilitate timely diagnosis of CTEPH, ultimately improving clinical management. KEY POINTS: ⢠Morphological imaging parameters derived from CT pulmonary angiography to distinguish between acute pulmonary embolism and chronic thromboembolic pulmonary hypertension lack diagnostic accuracy. ⢠Dual-layer dual-energy CT reveals different pulmonary perfusion patterns between acute pulmonary embolism and chronic thromboembolic pulmonary hypertension. ⢠The identified parameters yield potential to enable more timely identification of patients with chronic thromboembolic pulmonary hypertension.
RESUMEN
OBJECTIVES: To investigate photon-counting CT (PCCT)-derived virtual monoenergetic images (VMI) for artifact reduction in patients with unilateral total hip replacements (THR). METHODS: Forty-two patients with THR and portal-venous phase PCCT of the abdomen and pelvis were retrospectively included. For the quantitative analysis, region of interest (ROI)-based measurements of hypodense and hyperdense artifacts, as well as of artifact-impaired bone and the urinary bladder, were conducted, and corrected attenuation and image noise were calculated as the difference of attenuation and noise between artifact-impaired and normal tissue. Two radiologists qualitatively evaluated artifact extent, bone assessment, organ assessment, and iliac vessel assessment using 5-point Likert scales. RESULTS: VMI110keV yielded a significant reduction of hypo- and hyperdense artifacts compared to conventional polyenergetic images (CI) and the corrected attenuation closest to 0, indicating best possible artifact reduction (hypodense artifacts: CI: 237.8 ± 71.4 HU, VMI110keV: 8.5 ± 122.5 HU; p < 0.05; hyperdense artifacts: CI: 240.6 ± 40.8 HU vs. VMI110keV: 13.0 ± 110.4 HU; p < 0.05). VMI110keV concordantly provided best artifact reduction in the bone and bladder as well as the lowest corrected image noise. In the qualitative assessment, VMI110keV received the best ratings for artifact extent (CI: 2 (1-3), VMI110keV: 3 (2-4); p < 0.05) and bone assessment (CI: 3 (1-4), VMI110keV: 4 (2-5); p < 0.05), whereas organ and iliac vessel assessments were rated highest in CI and VMI70keV. CONCLUSIONS: PCCT-derived VMI effectively reduce artifacts from THR and thereby improve assessability of circumjacent bone tissue. VMI110keV yielded optimal artifact reduction without overcorrection, yet organ and vessel assessments at that energy level and higher were impaired by loss of contrast. CLINICAL RELEVANCE STATEMENT: PCCT-enabled artifact reduction is a feasible method for improving assessability of the pelvis in patients with total hip replacements at clinical routine imaging. KEY POINTS: ⢠Photon-counting CT-derived virtual monoenergetic images at 110 keV yielded best reduction of hyper- and hypodense artifacts, whereas higher energy levels resulted in artifact overcorrection. ⢠The qualitative artifact extent was reduced best in virtual monoenergetic images at 110 keV, facilitating an improved assessment of the circumjacent bone. ⢠Despite significant artifact reduction, assessment of pelvic organs as well as vessels did not profit from energy levels higher than 70 keV, due to the decline in image contrast.
Asunto(s)
Artroplastia de Reemplazo de Cadera , Humanos , Artefactos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Huesos , Interpretación de Imagen Radiográfica Asistida por Computador/métodosRESUMEN
A 61-year-old man with an esophageal cancer diagnosis underwent staging dual-energy CT of the chest and abdomen in the portal venous phase after contrast media administration. Aside from the primary tumor and suspicious local lymph nodes, CT revealed hypoattenuating ambiguous liver lesions, an incidental right adrenal nodule, and a right renal lesion with soft-tissue attenuation. In addition, advanced atherosclerosis of the abdominal aorta and its major branches was noted. This article provides a case-based review of dual-energy CT technologies and their applications in the abdomen. The clinical utility of virtual monoenergetic images, virtual unenhanced images, and iodine maps is discussed.
Asunto(s)
Yodo , Imagen Radiográfica por Emisión de Doble Fotón , Radiología , Abdomen , Medios de Contraste , Humanos , Masculino , Persona de Mediana Edad , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodosRESUMEN
PURPOSE: Several studies have shown baseline health-related quality of life to be a valuable prognostic indicator of survival outcomes for various cancer entities in the metastatic setting. To date, there is no evidence regarding the prognostic value of baseline health-related quality of life for patients undergoing radical prostatectomy due to localized prostate cancer. MATERIALS AND METHODS: A total of 1,029 patients with high-risk prostate cancer according to National Comprehensive Cancer Network® risk stratification and prospectively assessed baseline health-related quality of life prior to radical prostatectomy were identified. Patients were stratified by global health status domain of the QLQ-C30 questionnaire. Oncologic endpoints were biochemical recurrence-free survival and metastasis-free survival. Multivariable Cox regression models were performed to assess prognostic significance of baseline global health status on survival outcomes. Harrell's discrimination C-index was applied to calculate the predictive accuracy of the model and previously described risk stratification models. Decision curve analysis was applied to test the clinical net benefit associated with adding global health status to our multivariable model (P < .05). RESULTS: Median follow-up was 43 months. In multivariable analysis, global health status was confirmed as an independent predictor for increased biochemical recurrence-free survival (HR .97, 95% CI .96-.99; P = .001) and metastasis-free survival (HR .96, 95% CI .93-.99; P = .013), indicating a relative risk reduction of 2.9% for biochemical recurrence-free survival and 3.7% for metastasis-free survival per 1-point increase of baseline global health status. Adding baseline health-related quality of life to our model and to the Cancer of the Prostate Risk Assessment and National Comprehensive Cancer Network score improved discrimination in predicting biochemical recurrence-free survival and metastasis-free survival of the respective models. Decision curve analysis revealed a net benefit over all threshold probabilities. CONCLUSIONS: Our findings highlight baseline health-related quality of life to be a valuable and robust prognostic factor for patients with localized high-risk prostate cancer prior to radical prostatectomy. Baseline health-related quality of life increased prognostic accuracy of biochemical recurrence-free survival and metastasis-free survival.
Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Humanos , Masculino , Recurrencia Local de Neoplasia/epidemiología , Recurrencia Local de Neoplasia/cirugía , Prostatectomía , Neoplasias de la Próstata/patología , Calidad de Vida , Estudios RetrospectivosRESUMEN
OBJECTIVES: To investigate the robustness of radiomic features between three dual-energy CT (DECT) systems. METHODS: An anthropomorphic body phantom was scanned on three different DECT scanners, a dual-source (dsDECT), a rapid kV-switching (rsDECT), and a dual-layer detector DECT (dlDECT). Twenty-four patients who underwent abdominal DECT examinations on each of the scanner types during clinical follow-up were retrospectively included (n = 72 examinations). Radiomic features were extracted after standardized image processing, following ROI placement in phantom tissues and healthy appearing hepatic, splenic and muscular tissue of patients using virtual monoenergetic images at 65 keV (VMI65keV) and virtual unenhanced images (VUE). In total, 774 radiomic features were extracted including 86 original features and 8 wavelet transformations hereof. Concordance correlation coefficients (CCC) and analysis of variances (ANOVA) were calculated to determine inter-scanner robustness of radiomic features with a CCC of ≥ 0.9 deeming a feature robust. RESULTS: None of the phantom-derived features attained the threshold for high feature robustness for any inter-scanner comparison. The proportion of robust features obtained from patients scanned on all three scanners was low both in VMI65keV (dsDECT vs. rsDECT:16.1% (125/774), dlDECT vs. rsDECT:2.5% (19/774), dsDECT vs. dlDECT:2.6% (20/774)) and VUE (dsDECT vs. rsDECT:11.1% (86/774), dlDECT vs. rsDECT:2.8% (22/774), dsDECT vs. dlDECT:2.7% (21/774)). The proportion of features without significant differences as per ANOVA was higher both in patients (51.4-71.1%) and in the phantom (60.6-73.4%). CONCLUSIONS: The robustness of radiomic features across different DECT scanners in patients was low and the few robust patient-derived features were not reflected in the phantom experiment. Future efforts should aim to improve the cross-platform generalizability of DECT-derived radiomics. KEY POINTS: ⢠Inter-scanner robustness of dual-energy CT-derived radiomic features was on a low level in patients who underwent clinical examinations on three DECT platforms. ⢠The few robust patient-derived features were not confirmed in our phantom experiment. ⢠Limited inter-scanner robustness of dual-energy CT derived radiomic features may impact the generalizability of models built with features from one particular dual-energy CT scanner type.
Asunto(s)
Imagen Radiográfica por Emisión de Doble Fotón , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos XRESUMEN
OBJECTIVES: The aim of this study was to evaluate whether simple 2D measurements in axial slices of head and neck CT examinations correlate with generally established measurements of body composition in abdominal CT at the height of the third lumbar vertebra and thus allow for an estimation of muscle and fat masses. METHODS: One hundred twenty-two patients who underwent concurrent CT of the head and neck and the abdomen between July 2016 and July 2020 were retrospectively included. For a subset of 30 patients, additional bioelectrical impedance analysis (BIA) was available. Areas of paraspinal muscles at the height of the third (C3) and fifth cervical vertebrae (C5) as well as the total cross-sectional area at the height of C3 and at the submandibular level were correlated with the results of abdominal measurements and BIA. Furthermore, intra- and interreader variabilities of all measurements were assessed. RESULTS: Regarding adipose tissue, good correlations were found between the total cross-sectional area of the patient's body at the submandibular level and at the height of C3 between both abdominal measurements and BIA results (r = 0.8-0.92; all p < 0.001). Regarding muscle, the total paraspinal muscle area at the height of C3 and C5 showed strong correlations with abdominal measurements and moderate to strong correlations with BIA results (r = 0.44-0.80; all p < 0.001), with the muscle area on C5 yielding slightly higher correlations. CONCLUSIONS: Body composition information can be obtained with comparable reliability from head and neck CT using simple biplanar measurements as from abdominal CT. KEY POINTS: ⢠The total paraspinal muscle area at the height of C3 and C5 correlates strongly with abdominal muscle mass. ⢠The total cross-sectional area at the submandibular level and at the height of C3 shows good correlations with abdominal fat mass. ⢠The described measurements facilitate a rapid, opportunistic assessment of relevant body composition parameters.
Asunto(s)
Composición Corporal , Tomografía Computarizada por Rayos X , Abdomen , Composición Corporal/fisiología , Impedancia Eléctrica , Humanos , Músculo Esquelético , Reproducibilidad de los Resultados , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodosRESUMEN
BACKGROUND. Prior studies have provided mixed results for the ability to replace true unenhanced (TUE) images with virtual unenhanced (VUE) images when characterizing renal lesions by dual-energy CT (DECT). Detector-based dual-layer DECT (dlDECT) systems may optimize performance of VUE images for this purpose. OBJECTIVE. The purpose of this article was to compare dual-phase dlDECT examinations evaluated using VUE and TUE images in differentiating cystic and solid renal masses. METHODS. This retrospective study included 110 patients (mean age, 64.3 ± 11.8 years; 46 women, 64 men) who underwent renal-mass protocol dlDECT between July 2018 and February 2022. TUE, VUE, and nephrographic phase image sets were reconstructed. Lesions were diagnosed as solid masses by histopathology or MRI. Lesions were diagnosed as cysts by composite criteria reflecting findings from MRI, ultrasound, and the TUE and nephrographic phase images of the dlDECT examinations. One radiologist measured lesions' attenuation on all dlDECT image sets. Lesion characterization was compared between use of VUE and TUE images, including when considering enhancement of 20 HU or greater to indicate presence of a solid mass. RESULTS. The analysis included 219 lesions (33 solid masses; 186 cysts [132 simple, 20 septate, 34 hyperattenuating]). TUE and VUE attenuation were significantly different for solid masses (33.4 ± 7.1 HU vs 35.4 ± 8.6 HU, p = .002), simple cysts (10.8 ± 5.6 HU vs 7.1 ± 8.1 HU, p < .001), and hyperattenuating cysts (56.3 ± 21.0 HU vs 47.6 ± 16.3 HU, p < .001), but not septate cysts (13.6 ± 8.1 HU vs 14.0 ± 6.8 HU, p = .79). Frequency of enhancement 20 HU or greater when using TUE and VUE images was 90.9% and 90.9% in solid masses, 0.0% and 9.1% in simple cysts, 15.0% and 10.0% in septate cysts, and 11.8% and 38.2% in hyperattenuating cysts. All solid lesions were concordant in terms of enhancement 20 HU or greater when using TUE and VUE images. Twelve simple cysts and nine hyperattenuating cysts showed enhancement of 20 HU or greater when using VUE but not TUE images. CONCLUSION. Use of VUE images reliably detected enhancement in solid masses. However, VUE images underestimated attenuation of simple and hyperattenuating cysts, leading to false-positive findings of enhancement by such lesions. CLINICAL IMPACT. The findings do not support replacement of TUE acquisitions with VUE images when characterizing renal lesions by dlDECT.
Asunto(s)
Quistes , Imagen Radiográfica por Emisión de Doble Fotón , Anciano , Medios de Contraste , Femenino , Humanos , Aumento de la Imagen , Riñón , Masculino , Persona de Mediana Edad , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodosRESUMEN
PURPOSE: Preimplantation cardiac computed tomography (CT) for assessment of the left atrial appendage (LAA) enables correct sizing of the device and the detection of contraindications, such as thrombi. In the arterial phase, distinction between false filling defects and true thrombi can be hampered by insufficient contrast medium distribution. A delayed scan can be used to further differentiate both conditions, but contrast in these acquisitions is relatively lower. In this study, we investigated whether virtual monoenergetic images (VMI) from dual-energy spectral detector CT (SDCT) can be used to enhance contrast and visualization in the delayed phase. MATERIALS AND METHODS: Forty-nine patients receiving SDCT imaging of the LAA were retrospectively enrolled. The imaging protocol comprised dual-phase acquisitions with single-bolus contrast injection. Conventional images (CI) from both phases and 40-keV VMI from the delayed phase were reconstructed. Attenuation, signal-, and contrast-to-noise ratios (SNR/CNR) were calculated by placing regions-of-interest in the LAA, left atrium, and muscular portion of interventricular septum. Two radiologists subjectively evaluated conspicuity and homogeneity of contrast distribution within the LAA. RESULTS: Contrast of the LAA decreased significantly in the delayed phase but was significantly improved by VMI, showing comparable attenuation, SNR, and CNR to CI from the arterial phase (attenuation/SNR/CNR, CI arterial phase: 266.0 ± 117.0 HU/14.2 ± 7.2/6.6 ± 3.9; CI-delayed phase: 107.6 ± 35.0 HU/5.9 ± 3.0/1.0 ± 1.0; VMI delayed phase: 260.3 ± 108.6 HU/18.2 ± 10.6/4.8 ± 3.4). The subjective reading confirmed the objective findings showing improved conspicuity and homogeneity in the delayed phase. CONCLUSIONS: The investigated single-bolus dual-phase acquisition protocol provided improved visualization of the LAA. Homogeneity of contrast media was higher in the delayed phase, while VMI maintained high contrast.
Asunto(s)
Apéndice Atrial , Imagen Radiográfica por Emisión de Doble Fotón , Apéndice Atrial/diagnóstico por imagen , Humanos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Estudios Retrospectivos , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/métodosRESUMEN
OBJECTIVES: The accuracy of virtual unenhanced (VUE) images has been extensively investigated, yet data on their longitudinal reproducibility is limited. The study purpose was to evaluate the longitudinal reproducibility of VUE attenuation measurements on three different dual-energy CT (DECT) scanner types. METHODS: A total of 137 patients with repeated abdominal DECT either on a rapid kV switching (rsDECT; n = 46), a dual-layer detector (dlDECT; n = 43), or a dual-source scanner (dsDECT; n = 48) were retrospectively included. Attenuation was measured on VUE and corresponding contrast-enhanced images in the liver, spleen, kidneys, aorta, portal vein, and fat. Longitudinal reproducibility was evaluated by calculating the absolute inter-scan differences (HU) and the inter-scan variation (%). Measurement pairs with differences ≤ 10 HU were considered reproducible. Influence of contrast-enhanced attenuation on VUE reproducibility was analyzed using linear regression. RESULTS: The scanner-specific cohorts showed similar age (p-range: 0.35-0.99), sex (p-range: 0.68-1), body weight (p-range: 0.26-0.87), body diameter (p-range: 0.34-0.76), and inter-scan time (p-range: 0.52-0.83). In total, 94.9% of VUE measurements were reproducible for rsDECT, 93.8% for dlDECT, and 90.6% for dsDECT. Overall inter-scan variation was lowest in fat (4.0 (1.7-8.2)%) and highest in tissues with high contrast enhancement: the aorta (13.3 (4.6-21.3)%), portal vein (10.8 (5.7-19.8)%), and kidneys (10.7 (3.9-18.0)%). Significant differences in inter-scan variation were found between the scanner types for the aorta, portal vein, kidneys, and spleen. Inter-scan differences in contrast-enhanced attenuation significantly influenced inter-scan differences in VUE attenuation (p < 0.001; t-ratio: 4.34). CONCLUSIONS: Longitudinal reproducibility of VUE attenuation was high for all scanners, yet inter-scan variation of VUE attenuation was influenced by contrast enhancement, showing greatest magnitude and discrepancy between scanner types in vessels and the kidneys. KEY POINTS: ⢠We found that 94.9% of attenuation measurements on virtual unenhanced images were reproducible for rapid kV switching DECT, 93.8% for dual-layer detector DECT, and 90.6% for dual-source DECT. ⢠Inter-scan variation of attenuation in virtual unenhanced images was comparable between the three scanner types in the liver and fat, whereas inter-scan variation in the spleen, kidneys, portal vein, and aorta showed significant differences between scanner types (p < 0.05). ⢠Inter-scan attenuation differences in contrast-enhanced images significantly influenced inter-scan differences in virtual unenhanced attenuation (p < 0.001, t-ratio: 4.34), suggesting a residual impact of contrast enhancement differences between examinations.