Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 96(1): e0130121, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643427

RESUMEN

The ability of viruses to evade the host antiviral immune system determines their level of replication fitness, species specificity, and pathogenic potential. Flaviviruses rely on the subversion of innate immune barriers, including the type I and type III interferon (IFN) antiviral systems. Zika virus infection induces the degradation of STAT2, an essential component of the IFN-stimulated gene transcription factor ISGF3. The mechanisms that lead to STAT2 degradation by Zika virus are poorly understood, but it is known to be mediated by the viral NS5 protein that binds to STAT2 and targets it for proteasome-mediated destruction. To better understand how NS5 engages and degrades STAT2, functional analysis of the protein interactions that lead to Zika virus and NS5-dependent STAT2 proteolysis were investigated. Data implicate the STAT2 coiled-coil domain as necessary and sufficient for NS5 interaction and proteasome degradation after Zika virus infection. Molecular dissection reveals that the first two α-helices of the STAT2 coiled-coil domain contain a specific targeting region for IFN antagonism. These functional interactions provide a more complete understanding of the essential protein-protein interactions needed for Zika virus evasion of the host antiviral response and identify new targets for antiviral therapeutic approaches. IMPORTANCE Zika virus infection can cause mild fever, rash, and muscle pain and in rare cases can lead to brain or nervous system diseases, including Guillain-Barré syndrome. Infections in pregnant women can increase the risk of miscarriage or serious birth defects, including brain anomalies and microcephaly. There are no drugs or vaccines for Zika disease. Zika virus is known to break down the host antiviral immune response, and this research project reveals how the virus suppresses interferon signaling, and may reveal therapeutic vulnerabilities.


Asunto(s)
Interacciones Huésped-Patógeno , Interferones/metabolismo , Factor de Transcripción STAT2/metabolismo , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología , Virus Zika/fisiología , Susceptibilidad a Enfermedades , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Factor de Transcripción STAT2/química , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
2.
EMBO Rep ; 19(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29661858

RESUMEN

The production of type I interferon (IFN) is essential for cellular barrier functions and innate and adaptive antiviral immunity. In response to virus infections, RNA receptors RIG-I and MDA5 stimulate a mitochondria-localized signaling apparatus that uses TRAF family ubiquitin ligase proteins to activate master transcription regulators IRF3 and NFκB, driving IFN and antiviral target gene expression. Data indicate that a third RNA receptor, LGP2, acts as a negative regulator of antiviral signaling by interfering with TRAF family proteins. Disruption of LGP2 expression in cells results in earlier and overactive transcriptional responses to virus or dsRNA LGP2 associates with the C-terminus of TRAF2, TRAF3, TRAF5, and TRAF6 and interferes with TRAF ubiquitin ligase activity. TRAF interference is independent of LGP2 ATP hydrolysis, RNA binding, or its C-terminal domain, and LGP2 can regulate TRAF-mediated signaling pathways in trans, including IL-1ß, TNFα, and cGAMP These findings provide a unique mechanism for LGP2 negative regulation through TRAF suppression and extend the potential impact of LGP2 negative regulation beyond the IFN antiviral response.


Asunto(s)
Inmunidad Innata/genética , ARN Helicasas/metabolismo , ARN Bicatenario/inmunología , ARN Viral/inmunología , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Virosis/inmunología , Animales , Fibroblastos , Regulación de la Expresión Génica , Células HEK293 , Humanos , Interferón Tipo I/genética , ARN Helicasas/genética , Transducción de Señal/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Virosis/genética
3.
Development ; 143(15): 2791-802, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27317808

RESUMEN

The pattern of the Drosophila melanogaster adult wing is heavily influenced by the expression of proteins that dictate cell fate decisions between intervein and vein during development. dSRF (Blistered) expression in specific regions of the larval wing disc promotes intervein cell fate, whereas EGFR activity promotes vein cell fate. Here, we report that the chromatin-organizing protein CAP-D3 acts to dampen dSRF levels at the anterior/posterior boundary in the larval wing disc, promoting differentiation of cells into the anterior crossvein. CAP-D3 represses KNOT expression in cells immediately adjacent to the anterior/posterior boundary, thus blocking KNOT-mediated repression of EGFR activity and preventing cell death. Maintenance of EGFR activity in these cells depresses dSRF levels in the neighboring anterior crossvein progenitor cells, allowing them to differentiate into vein cells. These findings uncover a novel transcriptional regulatory network influencing Drosophila wing vein development, and are the first to identify a Condensin II subunit as an important regulator of EGFR activity and cell fate determination in vivo.


Asunto(s)
Cromosomas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Inmunoprecipitación de Cromatina , Cromosomas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
Cell Rep ; 37(13): 110175, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965427

RESUMEN

Lysine 63-linked polyubiquitin (K63-Ub) chains activate a range of cellular immune and inflammatory signaling pathways, including the mammalian antiviral response. Interferon and antiviral genes are triggered by TRAF family ubiquitin ligases that form K63-Ub chains. LGP2 is a feedback inhibitor of TRAF-mediated K63-Ub that can interfere with diverse immune signaling pathways. Our results demonstrate that LGP2 inhibits K63-Ub by association with and sequestration of the K63-Ub-conjugating enzyme, Ubc13/UBE2N. The LGP2 helicase subdomain, Hel2i, mediates protein interaction that engages and inhibits Ubc13/UBE2N, affecting control over a range of K63-Ub ligase proteins, including TRAF6, TRIM25, and RNF125, all of which are inactivated by LGP2. These findings establish a unifying mechanism for LGP2-mediated negative regulation that can modulate a variety of K63-Ub signaling pathways.


Asunto(s)
Regulación de la Expresión Génica , Lisina/metabolismo , FN-kappa B/metabolismo , ARN Helicasas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Citocinas/metabolismo , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/genética , FN-kappa B/genética , ARN Helicasas/genética , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA